(三)双目标定标定代码实践及问题

获取了棋盘格图像后就用opencv3自带的双目标定程序进行标定.stereo_calib.cpp文件如下,原始文件在Opencv2.49在Opencv_DIR/samples/cpp/stereo_calib.cpp
Opencv3.4在Opencv_DIR/samples/cpp/stereo_calib.cpp 路径下

1.实验代码

/* This is sample from the OpenCV book. The copyright notice is below */

/* *************** License:**************************
   Oct. 3, 2008
   Right to use this code in any way you want without warranty, support or any guarantee of it working.

   BOOK: It would be nice if you cited it:
   Learning OpenCV: Computer Vision with the OpenCV Library
     by Gary Bradski and Adrian Kaehler
     Published by O'Reilly Media, October 3, 2008

   AVAILABLE AT:
     http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
     Or: http://oreilly.com/catalog/9780596516130/
     ISBN-10: 0596516134 or: ISBN-13: 978-0596516130

   OPENCV WEBSITES:
     Homepage:      http://opencv.org
     Online docs:   http://docs.opencv.org
     Q&A forum:     http://answers.opencv.org
     Issue tracker: http://code.opencv.org
     GitHub:        https://github.com/opencv/opencv/
   ************************************************** */

#include "opencv2/calib3d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace cv;
using namespace std;

static int print_help()
{
    cout <<
            " Given a list of chessboard images, the number of corners (nx, ny)\n"
            " on the chessboards, and a flag: useCalibrated for \n"
            "   calibrated (0) or\n"
            "   uncalibrated \n"
            "     (1: use cvStereoCalibrate(), 2: compute fundamental\n"
            "         matrix separately) stereo. \n"
            " Calibrate the cameras and display the\n"
            " rectified results along with the computed disparity images.   \n" << endl;
    cout << "Usage:\n ./stereo_calib -w= -h= -s= \n" << endl;
    return 0;
}


static void
StereoCalib(const vector& imagelist, Size boardSize, float squareSize, bool displayCorners = true, bool useCalibrated=true, bool showRectified=true)
{
    if( imagelist.size() % 2 != 0 )
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return;
    }

    const int maxScale = 2;
    // ARRAY AND VECTOR STORAGE:

    vector > imagePoints[2];
    vector > objectPoints;
    Size imageSize;

    int i, j, k, nimages = (int)imagelist.size()/2;

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    vector goodImageList;

    for( i = j = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            const string& filename = imagelist[i*2+k];
            Mat img = imread(filename, 0);
            if(img.empty())
                break;
            if( imageSize == Size() )
                imageSize = img.size();
            else if( img.size() != imageSize )
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            vector& corners = imagePoints[k][j];
            for( int scale = 1; scale <= maxScale; scale++ )
            {
                Mat timg;
                if( scale == 1 )
                    timg = img;
                else
                    resize(img, timg, Size(), scale, scale, INTER_LINEAR_EXACT);
                found = findChessboardCorners(timg, boardSize, corners,
                    CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
                if( found )
                {
                    if( scale > 1 )
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }
            if( displayCorners )
            {
                cout << filename << endl;
                Mat cimg, cimg1;
                cvtColor(img, cimg, COLOR_GRAY2BGR);
                drawChessboardCorners(cimg, boardSize, corners, found);
                double sf = 640./MAX(img.rows, img.cols);
                resize(cimg, cimg1, Size(), sf, sf, INTER_LINEAR_EXACT);
                imshow("corners", cimg1);
                char c = (char)waitKey(500);
                if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
                    exit(-1);
            }
            else
                putchar('.');
            if( !found )
                break;
            cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
                         TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                      30, 0.01));
        }
        if( k == 2 )
        {
            goodImageList.push_back(imagelist[i*2]);
            goodImageList.push_back(imagelist[i*2+1]);
            j++;
        }
    }
    cout << j << " pairs have been successfully detected.\n";
    nimages = j;
    if( nimages < 2 )
    {
        cout << "Error: too little pairs to run the calibration\n";
        return;
    }

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);

    for( i = 0; i < nimages; i++ )
    {
        for( j = 0; j < boardSize.height; j++ )
            for( k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
    }

    cout << "Running stereo calibration ...\n";

    Mat cameraMatrix[2], distCoeffs[2];
    cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
    cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
    Mat R, T, E, F;

    double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                    cameraMatrix[0], distCoeffs[0],
                    cameraMatrix[1], distCoeffs[1],
                    imageSize, R, T, E, F,
                    CALIB_FIX_ASPECT_RATIO +
                    CALIB_ZERO_TANGENT_DIST +
                    CALIB_USE_INTRINSIC_GUESS +
                    CALIB_SAME_FOCAL_LENGTH +
                    CALIB_RATIONAL_MODEL +
                    CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
                    TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
    cout << "done with RMS error=" << rms << endl;

// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
    double err = 0;
    int npoints = 0;
    vector lines[2];
    for( i = 0; i < nimages; i++ )
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for( k = 0; k < 2; k++ )
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
        }
        for( j = 0; j < npt; j++ )
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                           fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
    cout << "average epipolar err = " <<  err/npoints << endl;

    // save intrinsic parameters
    FileStorage fs("intrinsics.yml", FileStorage::WRITE);
    if( fs.isOpened() )
    {
        fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
            "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    Mat R1, R2, P1, P2, Q;
    Rect validRoi[2];

    stereoRectify(cameraMatrix[0], distCoeffs[0],
                  cameraMatrix[1], distCoeffs[1],
                  imageSize, R, T, R1, R2, P1, P2, Q,
                  CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);

    fs.open("extrinsics.yml", FileStorage::WRITE);
    if( fs.isOpened() )
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the extrinsic parameters\n";

    // OpenCV can handle left-right
    // or up-down camera arrangements
    bool isVerticalStereo = fabs(P2.at(1, 3)) > fabs(P2.at(0, 3));

// COMPUTE AND DISPLAY RECTIFICATION
    if( !showRectified )
        return;

    Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
    if( useCalibrated )
    {
        // we already computed everything
    }
// OR ELSE HARTLEY'S METHOD
    else
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
    {
        vector allimgpt[2];
        for( k = 0; k < 2; k++ )
        {
            for( i = 0; i < nimages; i++ )
                std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
        }
        F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
        Mat H1, H2;
        stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);

        R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
        R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
        P1 = cameraMatrix[0];
        P2 = cameraMatrix[1];
    }

    //Precompute maps for cv::remap()
    initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
    initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);

    Mat canvas;
    double sf;
    int w, h;
    if( !isVerticalStereo )
    {
        sf = 600./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h, w*2, CV_8UC3);
    }
    else
    {
        sf = 300./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h*2, w, CV_8UC3);
    }

    for( i = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
            remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
            cvtColor(rimg, cimg, COLOR_GRAY2BGR);
            Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
            resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
            if( useCalibrated )
            {
                Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                          cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
            }
        }

        if( !isVerticalStereo )
            for( j = 0; j < canvas.rows; j += 16 )
                line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
        else
            for( j = 0; j < canvas.cols; j += 16 )
                line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
        imshow("rectified", canvas);
        char c = (char)waitKey();
        if( c == 27 || c == 'q' || c == 'Q' )
            break;
    }
}


static bool readStringList( const string& filename, vector& l )
{
    l.resize(0);
    FileStorage fs(filename, FileStorage::READ);
    if( !fs.isOpened() )
        return false;
    FileNode n = fs.getFirstTopLevelNode();
    if( n.type() != FileNode::SEQ )
        return false;
    FileNodeIterator it = n.begin(), it_end = n.end();
    for( ; it != it_end; ++it )
        l.push_back((string)*it);
    return true;
}

int main(int argc, char** argv)
{
    Size boardSize;
    string imagelistfn;
    bool showRectified;
    cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{s|1.0|}{nr||}{help||}{@input|../data/stereo_calib.xml|}");
    if (parser.has("help"))
        return print_help();
    showRectified = !parser.has("nr");
    imagelistfn = parser.get("@input");
    boardSize.width = parser.get("w");
    boardSize.height = parser.get("h");
   float squareSize = parser.get("s");
      // float squareSize = 0.041;
    if (!parser.check())
    {
        parser.printErrors();
        return 1;
    }
    vector imagelist;
    bool ok = readStringList(imagelistfn, imagelist);
    if(!ok || imagelist.empty())
    {
        cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
        return print_help();
    }

    StereoCalib(imagelist, boardSize, squareSize, false, true, showRectified);
    return 0;
}

2.实验

2.1第1次实验
输入参数

./stereo_calib -w=9 -h=6 -s=0.041 ../data/stereo_calib.xml

其中-w为棋盘格宽的格子数目
-h为棋盘格宽的格子数目
-s为棋盘格实际尺寸 单位为米
标定结果如下
extrinsics.yml

R: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [ 9.9982236007486369e-01, 2.1360600126655113e-04,
       1.8846821132640086e-02, -7.1276539539363111e-05,
       9.9997147876254333e-01, -7.5522566897144342e-03,
       -1.8847896805331284e-02, 7.5495717712098119e-03,
       9.9979385912901408e-01 ]
T: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [ -6.6075108015652972e-02, 5.8485982970651169e-04,
       -3.9667719209792876e-03 ]

其中P2的第二行第一列为基线距离
两个虚拟相机的基线b=normal(T)
标定出来的基线距离为b=6.6mm
实际量出来的6.1mm有一定的误差
什么原因呢?
1.首先输入的参数 -s=0.041和实际标定板的物理距离有偏差
2.校准输入图像数量太少,只选了24张

如何解决呢?
文献[1]中提出解决方法
在抓取图像时,要尽量让标定板占满整个图像画面;
标定板拍摄图片不能太少,以20幅左右为宜,且拍摄每幅图片时标定板所在平面与成像平面要有夹角和距离上的变化;
先对左右摄像机单独标定,再利用单独标定结果进行双目标定,标定结果要好于直接利用标定图像进行双目标定。

2.2第2次实验
尝试解决过程
(1)重新打印标定板弄精确点(打印的时候设置每个格子为4cm*4cm)
(2)多采集几幅图像(40张)

第二次标定

./stereo_calib -w=9 -h=6 -s=0.040 ../data/stereo_calib.xml

第二次标定结果

T: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [ -6.0660435539064854e-02, -1.2209630833796844e-04,
       9.8321891780593206e-04 ]

两个虚拟相机的基线b=normal(T)
标定出来的基线距离为b=6.06mm
实际量出来的6.1mm 误差在1mm之内
标定成功

第二次标定的图像数据集下载链接
https://download.csdn.net/download/ktigerhero3/10786674
注意我用opencv2.4.9同样的数据标定得到的基线值有很大的误差.
参考文献
文献[1] 基于OpenCV的双目摄像机标定[期刊]
opencv3 源代码包中的stereo_calib.cpp文件
https://blog.csdn.net/u011722133/article/details/79422942
https://www.cnblogs.com/zhazhiqiang2018/p/9538986.html

你可能感兴趣的:(双目摄像头)