题意:
数轴上点[0, 30000]。先从 0 跳到 d, 以后每次跳的步数是 {prev-1, prev, prev+1}。跳到某个点上可以得到相应的value,求可以得到最大的value。
思路:
n, d 最大都是30000, 所以 min_step >= d-246, max_step<= d-246
所以方程 f[i, j] 当前在 i, 前一次跳的长度是 j
注意要把 [min_step, max_step] 映射到 [0, 2*246] 上面来。。
或者直接开 vector< pair
code1
#include
using namespace std;
#define SPEED_UP iostream::sync_with_stdio(false);
#define FIXED_FLOAT cout.setf(ios::fixed, ios::floatfield);
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
typedef long long LL;
const int Maxn = 30000;
const int D = 250;
const int Maxn2 = D*2;
int n, d, limi, min_step, max_step, offset;
LL v[Maxn+5], f[Maxn+5][Maxn2+5];
void init() {
cin >> n >> d;
limi = -1;
rep(i, 1, n) {
int t;cin >> t;++v[t];limi = max(limi, t);
}
min_step = max(1, d - D);
max_step = d + D;
offset = min_step;
}
int test(int x) {
int sum = 0, k = x;
while (sum <= Maxn) sum += k++;
max_step = k;
sum = 0, k = 1;
while(true) {
if ((k+x)*(x-k+1)/2 < Maxn) break;
++k;
}
return max_step - k+1;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
#endif
SPEED_UP
init();
memset(f, -1, sizeof(f));
f[d][d-offset] = v[d];
LL ans = f[d][d-offset];
rep(i, d+1, Maxn) {
if (i > limi) break;
rep(j, min_step, max_step)
if (i - j >= 0) {
//cout << "Calc f[" << i << ", " << j << "]\n";
int t = i-j;
LL _max = -1;
if (f[t][j+1-offset] != -1) _max = max(_max, f[t][j+1-offset]);
if (f[t][j-offset] != -1) _max = max(_max, f[t][j-offset]);
if (f[t][j-1-offset] != -1) _max = max(_max, f[t][j-1-offset]);
if (_max != -1) f[i][j-offset] = _max + v[i];
ans = max(ans, f[i][j-offset]);
}
}
cout << ans << endl;
return 0;
}
code2
#include
using namespace std;
#define SPEED_UP iostream::sync_with_stdio(false);
#define FIXED_FLOAT cout.setf(ios::fixed, ios::floatfield);
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
typedef long long LL;
const int Maxn = 30000;
const int D = 250;
int n, d, limi, min_step, max_step, vis[Maxn];
LL v[Maxn+5];
vector > f[Maxn+5];
void init() {
cin >> n >> d;
limi = -1;
rep(i, 1, n) {
int t;cin >> t;++v[t];limi = max(limi, t);
}
min_step = max(1, d - D);
max_step = d + D;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
#endif
SPEED_UP
init();
memset(f, -1, sizeof(f));
f[d].push_back( make_pair(d, v[d]) );
LL ans = v[d];
rep(i, d+1, Maxn) {
if (i > limi) break;
rep(j, min_step, max_step)
if (i - j >= 0 && f[i-j].size()) {
int t = i-j;
// 按照步长排序
if (!vis[t]) {
if (f[t].size() > 1)
sort(f[t].begin(), f[t].end());
vis[t] = 1;
}
pair tp = make_pair(max(1, j-1), 0);
auto it1 = lower_bound(f[t].begin(), f[t].end(), tp);
tp = make_pair(j+2, 0);
auto it2 = lower_bound(f[t].begin(), f[t].end(), tp);
LL _max = -1;
//cout <<"i: " << i << " j: " << j << " t: " << t << " range: " << it1->first << ' ' << it2->first << endl;
for (auto it = it1;it != it2;++it) {
int tmp = it->first;
LL val = it->second;
if (tmp == max(1, j-1) || tmp == j || tmp == j+1) {
_max = max(_max, val);
}
// cout <<"i: " << i << " j: " << j << " t: " << t << " range: " << it1->first << ' ' << it2->first << endl;
}
if (_max != -1) {
f[i].push_back(make_pair(j, _max + v[i]));
ans = max(ans, _max + v[i]);
//cout <<"i: " << i << " j: " << j << " t: " << t << " range: " << it1->first << ' ' << it2->first << endl;
}
}
}
cout << ans << endl;
return 0;
}