Anti-hash Test
Network Test
2020杭电多校 第十场 1003 Mine Sweeper 构造
随机生成
#include
using namespace std;
#define between(x, a, b) (a<=x && x<=b)
const int dir[8][2] = {
1, 0, 0, 1, -1, 0, 0, -1, -1, -1, -1, 1, 1, -1, 1, 1};
int n;
map<int, vector<vector<char>>> mp;
int solve(vector<vector<char>> a) {
int r = a.size();
int c = a[0].size();
int res = 0;
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
if (a[i][j] == '.') {
int cnt = 0;
for (int l = 0; l < 8; l++) {
int dx = i + dir[l][0];
int dy = j + dir[l][1];
if (between(dx, 0, r - 1) && between(dy, 0, c - 1) && a[dx][dy] == 'X') {
cnt++;
}
}
res += cnt;
}
}
}
return res;
}
void init() {
srand((int) time(0));
for (int k = 1; k <= 50000; k++) {
int r = (rand() % 25) + 1;
int c = (rand() % 25) + 1;
vector<vector<char>> a(r, vector<char>(c));
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
a[i][j] = (rand() % 2) ? 'X' : '.';
}
}
int sum = solve(a);
mp[sum] = a;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
init();
int T;
cin >> T;
for (int cs = 1; cs <= T; cs++) {
cin >> n;
vector<vector<char>> a = mp[n];
int r = a.size();
int c = a[0].size();
cout << r << " " << c << endl;
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
cout << a[i][j] << (j == c - 1 ? "\n" : "");
}
}
}
return 0;
}
Permutation Counting
Tree Cutting
Divide and Conquer
Coin Game
I do not know Graph Theory!
Photography
Tic-Tac-Toe-Nim
每一个状态 i i i 的期望值都有如下公式对应
E i = ∑ p i j × E j + 1 E_i=\sum p_{ij}\times E_j +1 Ei=∑pij×Ej+1
其中 j j j 是状态 i i i 能够到达的所有的下一个状态
假设存在一个任务排列 { p 1 , p 2 , . . . p n } \{p_1,p_2,...p_n\} { p1,p2,...pn} 使得目标期望最小化,则存在
E 1 = ( 1 − C m − k t p 1 ) C m t p 1 × E 1 + C m − k t p 1 C m t p 1 × E 2 + 1 E_1=\cfrac{(1-C^{t_{p_1}}_{m-k})}{C^{t_{p_1}}_m}\times E_1+\cfrac{C^{t_{p_1}}_{m-k}}{C^{t_{p_1}}_m}\times E_2+1 E1=Cmtp1(1−Cm−ktp1)×E1+Cmtp1Cm−ktp1×E2+1
其中 ( 1 − C m − k t p 1 ) C m t p 1 \cfrac{(1-C^{t_{p_1}}_{m-k})}{C^{t_{p_1}}_m} Cmtp1(1−Cm−ktp1) 为选中了任意一个干坏事的人而停留在当前状态的概率(反正就是那k个人中的一个)
而 C m − k t p 1 C m t p 1 \cfrac{C^{t_{p_1}}_{m-k}}{C^{t_{p_1}}_m} Cmtp1Cm−ktp1 则是顺利进入下一个状态的概率, 1 1 1 是当前状态进入到下一个状态的代价
观察到左右同时拥有 E 1 E_1 E1 ,进一步化简得到如下公式
E 1 − E 2 = C m t p 1 C m − k t p 1 E_1-E_2=\cfrac{C^{t_{p_1}}_m}{C^{t_{p_1}}_{m-k}} E1−E2=Cm−ktp1Cmtp1
再继续推下一个状态 E 2 E_2 E2 :
E 2 = ( 1 − C m − t p 1 − k t p 2 ) C m − t p 1 t p 2 × E 2 + C m − t p 1 − k t p 2 C m − t p 1 t p 2 × E 3 + 1 E_2=\cfrac{(1-C^{t_{p_2}}_{m-t_{p_1}-k})}{C^{t_{p_2}}_{m-t_{p_1}}}\times E_2+\cfrac{C^{t_{p_2}}_{m-t_{p_1}-k}}{C^{t_{p_2}}_{m-t_{p_1}}}\times E_3+1 E2=Cm−tp1tp2(1−Cm−tp1−ktp2)×E2+Cm−tp1tp2Cm−tp1−ktp2×E3+1
E 2 − E 3 = C m − t p 1 t p 2 C m − t p 1 − k t p 2 E_2-E_3=\cfrac{C^{t_{p_2}}_{m-t_{p_1}}}{C^{t_{p_2}}_{ {m-t_{p_1}}-k}} E2−E3=Cm−tp1−ktp2Cm−tp1tp2
到这一步应该都看出来接下来应该怎么做了:
( E 1 − E 2 ) + ( E 2 − E 3 ) + . . . . + ( E n − 1 − E n ) (E_1-E_2)+(E_2-E_3)+....+(E_{n-1}-E_n) (E1−E2)+(E2−E3)+....+(En−1−En)
E 1 − E n = C m t p 1 C m − k t p 1 + C m − t p 1 t p 2 C m − t p 1 − k t p 2 + . . . . + C m − ∑ t p i t p n C m − ∑ t p i − k t p n E_1-E_n=\cfrac{C^{t_{p_1}}_m}{C^{t_{p_1}}_{m-k}}+\cfrac{C^{t_{p_2}}_{m-t_{p_1}}}{C^{t_{p_2}}_{ {m-t_{p_1}}-k}}+....+\cfrac{C^{t_{p_{n}}}_{m-\sum t_{p_i}}}{C^{t_{p_n}}_{m-\sum t_{p_i}-k}} E1−En=Cm−ktp1Cmtp1+Cm−tp1−ktp2Cm−tp1tp2+....+Cm−∑tpi−ktpnCm−∑tpitpn
一般都令 E n = 0 E_n=0 En=0, E 1 E_1 E1 即为官方题解上的那个公式
emmmm 证明不会证,凭感觉猜的,n这个范围差点让我错过这道题
#include
using namespace std;
const int N = 1e6 + 10;
int n, m, k;
struct node {
int id, t;
} a[N];
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T;
cin >> T;
for (int cs = 1; cs <= T; cs++) {
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
cin >> a[i].t;
a[i].id = i;
}
if (k == 0) {
for (int i = 1; i <= n; i++) {
cout << i << (i == n ? "\n" : " ");
}
} else {
sort(a + 1, a + 1 + n, [](node x, node y) {
if (x.t == y.t) return x.id < y.id;
return x.t > y.t;
});
for (int i = 1; i <= n; i++) {
cout << a[i].id << (i == n ? "\n" : " ");
}
}
}
return 0;
}