- 趣学贝叶斯统计:逻辑与二项分布
Ashleyxxihf
Python与统计统计概率论开发语言Courserapython
目录前言关键词:第三章逻辑第四章创建二项分布1.二项分布的结构2.组合学(combinatorics)3.计算期期望结果概率4.代码总结前言高中时概率与统计中,大家学过逻辑符号、二项分布。今天我们重新复习一下基本知识,系统梳理推导过程,并稍微进阶到代码和库的运用中。关键词:ANDORBUT二项分布概率质量函数(probabilitymassfunction,PMF)累计分布函数(Cumulativ
- Python——利用sympy模块进行数学计算
Fo*(Bi)
算法python数学建模
参考链接:SymPy简易教程SymPy库常用函数Pythonsympy模块常用功能(一)Python科学计算库SymPy初探简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理
- 数理统计基础:参数估计与假设检验
_StarryNight_
机器学习概率论
在学习机器学习的过程中,我充分感受到概率与统计知识的重要性,熟悉相关概念思想对理解各种人工智能算法非常有意义,从而做到知其所以然。因此打算写这篇笔记,先好好梳理一下参数估计与假设检验的相关内容。1总体梳理先从整体结构上进行一个把握。数理统计的主要任务是通过样本的信息推断总体的信息,即统计推断工作。统计推断主要有两大类问题:参数估计和假设检验。它们都建立在抽样分布理论的基础之上,但角度不同。参数估计
- 18个常见的数据分析面试题-概率统计类
可乐的数据分析之路
总结了一些常见的概率与统计类的数据分析面试题,不定期更新......随机变量的含义一个随机事件的所有可能的值X,且每个可能值X都有确定的概率P,X就是P(X)的随机变量。比如掷骰子中出现的点数随机变量和随机试验间有什么关系随机试验:相同条件下对某随机现象进行的大量重复观测的试验,如掷硬币100次统计正面朝上的次数随机变量是用来描述随机试验结果的。划分连续型随机变量和离散型随机变量的依据离散型随机变
- LeetCode-470. 用 Rand7() 实现 Rand10()【数学 拒绝采样 概率与统计 随机化】
旋转的油纸伞
算法题leetcode算法职场和发展拒绝采样随机化
LeetCode-470.用Rand7实现Rand10【数学拒绝采样概率与统计随机化】题目描述:解题思路一:首先说一个结论就是`(rand_X()-1)×Y+rand_Y()==>[1,X*Y]`,即可以等概率的生成[1,X*Y]范围的随机数,其实就像军训的时候报数,Y是每一行的人数,X是列数【参考下面的图】。第二就是拒绝采样,效果是能够减少调用rand7()的调用次数。我们在利用`(rand_7
- 概率与统计
pig250
统计,根据过去的数据,进行归纳,做出总结(结论)比如:小新过去10年有十次创业,均失败了,推测他不适合创业。概率,根据给定的条件,做出推测比如:小新的爸爸是马化腾,推测出他创业成功的概率是99%。统计学:已知局部猜整体概率论:已知整体估局部互逆(1)演绎:从基本假设(即公理)、定理和条件顺推概率(分布),得到的是先验概率;这是概率论的主要领域,重在理论(原理)。(2)归纳:从样本的概率(分布)逆推
- 最大似然估计与最大后验概率估计
陈城南
概率与统计概率是已知模型、参数推数据,而统计是已知数据推模型和参数。似然和概率是两个意思很相似的词,但含义不同。相当于从不同视角理解同一个东西。对于函数,其中x为数据,为参数。若参数是确定的,数据x是未知的,则P叫概率函数。描述的是,对于不同的样本x,其出现时的概率是多少;若数据x是已知的,参数是未知的,则P就叫似然函数。描述的是,对于不同的参数,出现样本点x的概率是多少;贝叶斯公式最大似然估计已
- 条件概率、联合概率、边缘概率的区别及独立事件、古典概型
喔就是哦噢喔
DeepLearn概率论
深入学习机器学习、分布式算法才发现概率与统计,线代都很重要,下面我简单串一下如题目所示的知识第一步:P(A|B)是在条件B发生的情况下A发生的概率,P(AB)是条件A与B同时发生的概率。关于条件概率、联合概率的例子我在最后一步骤举出,如独立事件和古典概型都懂,则请跳至最后一步看例子先记牢靠公式:在这里,可以按照下图来理解:P(AB)等于图中的A交B的部分的概率,而P(A|B)等于A交B的面积的占B
- GeoGebra:数学动画制作工具重磅来袭
人工智能大讲堂
学习资料线性代数机器学习数学可视化工具
【线性代数】线性代数可视化工具:manimmanim是之前我跟大家分享的一个线性代数动画制作工具。但我之前的描述有些许偏差,这里要更正一下,manim不仅限于制作线性代数动画,也可以制作数学其他学科的动画,例如微积分,概率与统计等等,甚至还可以制作物理动画。今天跟大家分享的GeoGebra同样是一个数学动画制作工具,既然有manim为什么还要介绍GeoGebra呢?这要从manim的自身的特点说起
- 2021单招十类计算机试题,2021年河北省高职单招考试十类和高职单招对口电子电工类、对口计算机类联考文化素质考试(数学)考试大纲...
这件事情足够自信
2021单招十类计算机试题
2021年河北省高职单招考试十类和高职单招对口电子电工类、对口计算机类联考文化素质考试(数学)考试大纲一、考试总体要求单招数学学科考试旨在测试中学数学基础知识、基本技能、基本方法,考查数学思维能力、归纳抽象、符号表示、运算求解以及运用所学数学知识和方法分析问题和解决问题的能力。复习考试范围包括代数、三角、平面解析几何和概率与统计初步四部分。考试内容的知识要求和能力要求作如下说明:(一)知识要求1.
- 路线_机器学习
榴霖燚炀
深度学习机器学习学习路线
1.引言2.机器学习关注问题3.入门方法与学习路径3.1数学基础3.1.1微积分3.1.2线性代数3.1.3概率与统计3.2典型算法3.3编程语言、工具和环境3.3.1python3.3.2R3.3.3其他语言3.3.4大数据相关3.3.5操作系统3.4基本工作流程3.4.1抽象成数学问题3.4.2获取数据3.4.3特征预处理与特征选择3.4.4训练模型与调优3.4.5模型诊断3.4.6模型融合3
- 【OpenCV 例程 300篇】233. 区域特征之矩不变量
youcans_
#opencvpython图像处理计算机视觉
『youcans的OpenCV例程200篇-总目录』【youcans的OpenCV例程300篇】233.区域特征之矩不变量4.4区域特征之矩不变量矩是概率与统计中的一个概念,是随机变量的一种数字特征。矩函数在图像分析中有着广泛的应用,如模式识别、目标分类、图像编码与重构等。把图像的像素坐标视为二维随机变量(X,Y),就可以用矩来描述灰度图像的特征。图像矩是对特征进行参数描述的一种算法,通常描述了图
- 第六讲:非线性优化(上)
兔子不吃草~
视觉SLAM十四讲线性代数矩阵算法笔记概率论c++
第六讲:非线性优化(上)文章目录第六讲:非线性优化(上)1概率论与统计学基础1.1概率与统计关系1.2概率密度函数1.3贝叶斯公式1.4矩1.5方差与协方差矩阵1.5.1方差1.5.2协方差矩阵1.5.3方差与协方差的区别1.6统计独立性与不相关性1.7高斯概率密度函数1.7.1一维高斯分布1.7.2二维高斯分布1.7.3N维高斯分布1.7.4高斯分布线性运算1.8似然函数p(x∣θ)p(x|\t
- 人工智能数学基础--概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论概率统计贝叶斯法则样本空间
随机试验我们都非常熟悉在科学研究和工程中试验的重要性。试验对我们是有用的,因为我们可以假定,在非常接近的确定条件下进行固定的试验,基本上会得到相同的结果。在这样的环境中,我们可以控制那些对试验结果有影响的变量的值。然而在某些试验中,我们不可能断定或控制一些变量的值,虽然大多数的条件都是相同的,但每一次试验的结果会不同。这样的试验称为随机的。样本空间由随机试验的一切可能的结果组成的一个集合S,称为样
- 21. 概率与统计 - 数学期望、统计描述&分布
茶桁
茶桁的AI秘籍-数学篇数学人工智能概率分布
文章目录数学期望方差标准差协方差二项分布高斯分布中心极限定理泊松分布Hi,你好。我是茶桁。在上一节中,我们最后有谈到随机变量。在概率论几统计学中,描述一个随机变量的离散程度的有方差、标准差等等。那么在这节课中,我们就来好好看看这些概念。不过在这之前呢,我们先来看看什么是「数学期望」。数学期望数学期望告诉我们,对于随机试验的结果,我们可以有怎样定量的期待。也就是说,实验还没做之前,可以有怎么样的一个
- 19. 概率与统计 - 频率派&贝叶斯派
茶桁
茶桁的AI秘籍-数学篇人工智能数学概率论
文章目录频数和频率频率派视角下的概率贝叶斯派视角下的概率Hi,您好。我是茶桁。本节课,咱们开始学习「概率&统计」的部分,说实话,这个部分是我觉得最有意思的地方。在之前的课程中,除了导论课给大家过了一遍通识性的各个领域的一些知识之外,我们已经上过了关于微积分、还有关于先行代数的一些东西。都是和我们在未来人工智能这个领域所运用到的方面有很强的一个联系,包括现在我们要学习的概率统计也是一样。虽然它是和导
- 人工智能数学基础--概率与统计5:独立随机变量和变量替换
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论随机变量高等数学概率统计
一、独立随机变量1.1、离散的独立随机变量假设X和Y是离散的随机变量,若事件X=x和Y=y对所有的x和y都是独立事件(独立事件定义请参考《人工智能数学基础–概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则》),则称X和Y是独立随机变量,在该情形:P(X=x,Y=y)=P(X=x)P(Y=y) (27)或等价于f(x,y)=f1(x)f2(y) (28)相反地
- 20. 概率与统计 - 概型、概率和随机变量
茶桁
茶桁的AI秘籍-数学篇概率论数学
文章目录古典概型几何概型联合概率条件概率随机变量Hi,您好。我是茶桁。在开始今天的课程之前呢,先跟大家提一句抱歉,上一节课程本应该是《19.概率与统计-频率派&贝叶斯派》,但是标题写错了。其中部分文章我已经做了修改,但是公众号内由于不给修改,所以就放着没动。而上节课标题中的内容,「古典概型&几何概型」应该是今天的课程才对。除了概型之外,我们今天还要介绍一下几种概率以及随机变量。好,话不多说,让我们
- 线性回归方程
Risehuxyc
Math线性回归算法回归
性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛.线性回归方程公式规律总结(3)回归分析是处理变量相关关系的一种数学方法.主要用来解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预
- 国外AI大牛推荐的10大最有帮助免费在线机器学习课程
机器学习与系统
woman_ml.jpg本文编译自twitter用户chipro斯坦福在线自学课程《概率与统计》:该课程涉及概率统计的基本概念,涵盖机器学习4个基本方面:探索性数据分析,产生数据,概率和推理。MIT的《线性代数》:这是我见过的最好的线性代数课程,由传奇教授GilbertStrang(吉尔伯特斯特朗)教授。斯坦福的CS231N:用于视觉识别的卷积神经网络:平衡理论与实践。课堂笔记写得很好,解释了不同
- 人工智能数学基础--概率与统计15:多维随机变量/向量
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论概率统计边缘分布多维随机变量
一、多维随机变量定义一般地,设X=(X1,X2,···,X,)为一个n维向量,其每个分量,即X1、···、Xn都是一维随机变量,则称X是一个n维随机向量或n维随机变量。与随机变量一样,随机向量也有离散型和连续型之分。二、离散型多维随机向量一个随机向量X=(X1,···,Xn),如果其每一个分量Xi都是一维离散型随机变量,则称X为离散型的。2.1、离散型多维随机向量的概率定义2.1以ai1,ai2,
- 如何做出更正确的商业决策
任性的Cissy
如何做出更正确的商业决策1、学好数学,尤其是概率与统计。对有办法验证客观概率的,求助数学,不要依靠主观判断。2、对没有办法验证客观概率的,也不要过于相信自己的主观直觉。问问专业顾问,或者身边更多朋友的建议,用他们的人生经历,对冲你的先入为主。
- 概率与统计
张叁疯_
这周学的很懵,这老师讲的也很潦草,勉强整理了一些ppt的笔记需要转Github查看:阿龙的概率统计整理主要有关于在总体方差已知和未知两种不同的情况下犯第一类错误和第二类错误的假设检验,置信区间,置信度。第一类错误与第二类错误的区分我不是科班出身,深入的消化吸收还需要时间,最好是多多利用这种理论。下周还要概率统计,想想就头大。。。。。。还要花时间继续复习之前的案例和mysql语法,希望9月10月找到
- 数学——七桥问题——图论
Sirius·Black(有关必回)
数学机器学习人工智能
当涉及数学,有很多不同的话题可以讨论。你是否有特定的数学领域、概念或问题想要了解更多?以下是一些常见的数学领域和主题,你可以选择一个或者告诉我你感兴趣的具体内容,我将很乐意为你提供更多信息:代数学:包括代数方程、多项式、群论、环论等。几何学:从欧几里得几何到非欧几何,涉及空间、形状、位置等。微积分:研究变化率和积分,是分析学的基础。概率与统计:研究随机事件的概率和数据的分析。数论:研究整数的性质,
- 山东大学软件学院考试回忆——大二上
叶卡捷琳堡
vue
文章目录学习科目整体回忆上课考试回忆Web技术大学物理概率与统计计算机组织与结构离散数学(2)数据结构(双语)学习科目Web技术大学物理概率与统计计算机组织与结构离散数学(2)(双语)数据结构(双语)整体回忆大二上有两门专业基础课挺重要的,分别是数据结构和计算机组成原理。Web技术主要倾向于自学+完成项目。大二上整体的感觉是实验较多,Web,数据结构,机组都有实验。自学的内容也很多,比如web技术
- 原创二:八上数学生长框架图
昱溪_32d6
图片发自App开学第一节数学课,我做了三件事:一、点评暑假作业完成情况及德育教育(10分钟左右);二、引导学生梳理七年级与本学期内容;三、提出本学期学习要求(5分钟左右)。第二部分为本课重点,旨在让学生站在一个新的高度来回望七年级所学内容,同时引出八下内容。学生通过回顾七年级内容,将七年级所有内容分为三类:数与式、图形与几何、概率与统计,再将七年级一学年各章节内容一一进行归类。在此过程中,点出七年
- 人工智能数学基础
Kali与编程~
初学AI与人工智能人工智能机器学习计算机视觉
第一章人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章数学基础1.1线性代数1.2概率与统计1.3微积分第三章监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章计算机视觉1.1图像分类1.2目标检测1.3图像分
- 人工智能之机器学习
Kali与编程~
初学AI与人工智能人工智能机器学习计算机视觉
第一章人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章数学基础1.1线性代数1.2概率与统计1.3微积分第三章监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章计算机视觉1.1图像分类1.2目标检测1.3图像分
- 人工智能之深度学习
Kali与编程~
初学AI与人工智能人工智能深度学习计算机视觉
第一章人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章数学基础1.1线性代数1.2概率与统计1.3微积分第三章监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章计算机视觉1.1图像分类1.2目标检测1.3图像分
- 自然语言处理
Kali与编程~
初学AI与人工智能自然语言处理人工智能计算机视觉
第一章人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章数学基础1.1线性代数1.2概率与统计1.3微积分第三章监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章计算机视觉1.1图像分类1.2目标检测1.3图像分
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出