Codeforces 611C New Year and Domino(dp)

C. New Year and Domino
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

They say "years are like dominoes, tumbling one after the other". But would a year fit into a grid? I don't think so.

Limak is a little polar bear who loves to play. He has recently got a rectangular grid with h rows and w columns. Each cell is a square, either empty (denoted by '.') or forbidden (denoted by '#'). Rows are numbered 1 through h from top to bottom. Columns are numbered 1 through w from left to right.

Also, Limak has a single domino. He wants to put it somewhere in a grid. A domino will occupy exactly two adjacent cells, located either in one row or in one column. Both adjacent cells must be empty and must be inside a grid.

Limak needs more fun and thus he is going to consider some queries. In each query he chooses some rectangle and wonders, how many way are there to put a single domino inside of the chosen rectangle?

Input

The first line of the input contains two integers h and w (1 ≤ h, w ≤ 500) – the number of rows and the number of columns, respectively.

The next h lines describe a grid. Each line contains a string of the length w. Each character is either '.' or '#' — denoting an empty or forbidden cell, respectively.

The next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries.

Each of the next q lines contains four integers r1i, c1i, r2i, c2i (1 ≤ r1i ≤ r2i ≤ h, 1 ≤ c1i ≤ c2i ≤ w) — the i-th query. Numbers r1i and c1i denote the row and the column (respectively) of the upper left cell of the rectangle. Numbers r2i and c2i denote the row and the column (respectively) of the bottom right cell of the rectangle.

Output

Print q integers, i-th should be equal to the number of ways to put a single domino inside the i-th rectangle.

Sample test(s)
Input
5 8
....#..#
.#......
##.#....
##..#.##
........
4
1 1 2 3
4 1 4 1
1 2 4 5
2 5 5 8
Output
4
0
10
15
Input
7 39
.......................................
.###..###..#..###.....###..###..#..###.
...#..#.#..#..#.........#..#.#..#..#...
.###..#.#..#..###.....###..#.#..#..###.
.#....#.#..#....#.....#....#.#..#..#.#.
.###..###..#..###.....###..###..#..###.
.......................................
6
1 1 3 20
2 10 6 30
2 10 7 30
2 2 7 7
1 7 7 7
1 8 7 8
Output
53
89
120
23
0
2
Note

A red frame below corresponds to the first query of the first sample. A domino can be placed in 4 possible ways.

Codeforces 611C New Year and Domino(dp)_第1张图片


分析:

d[i][j]数组保存从(1,1)——(i,j)的可行情况数,

#include
#include
#include
#include
#include
#include
using namespace std;
const int maxn=500+9;
#define inf 0x3f3f3f3f
int h,w,d[maxn][maxn];
char a[maxn][maxn];
int main()
{
   // freopen("f.txt","r",stdin);
    scanf("%d%d",&h,&w);
    for(int i=1;i<=h;i++)scanf("%s",a[i]+1);
    memset(d,0,sizeof(d));

    for(int i=2;i<=h;i++)
        if(a[i][1]=='.'&&a[i-1][1]=='.')d[i][1]=d[i-1][1]+1;
        else d[i][1]=d[i-1][1];
    for(int i=2;i<=w;i++)
        if(a[1][i]=='.'&&a[1][i-1]=='.')d[1][i]=d[1][i-1]+1;
        else d[1][i]=d[1][i-1];
    int temp;
    for(int i=2;i<=h;i++){
        for(int j=2;j<=w;j++){
            temp=0;
            if(a[i][j]=='#')temp=d[i-1][j]+d[i][j-1]-d[i-1][j-1];
            else {
                if(a[i][j-1]=='.'&&a[i-1][j]=='.')temp=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+2;
                else if(a[i][j-1]=='#'&&a[i-1][j]=='#')temp=d[i-1][j]+d[i][j-1]-d[i-1][j-1];
                else temp=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+1;
            }
            d[i][j]=temp;
        //d[i][j]=max(temp,d[i][j]);
        }
    }
    int n,r1,r2,s1,s2;
    scanf("%d",&n);
    while(n--){
        scanf("%d%d%d%d",&r1,&s1,&r2,&s2);
        int sum=0;
        for(int i=s1;i


你可能感兴趣的:(Codeforces,————动态规划————)