- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 强连通分量(SCC,Strongly Connected Components)学习笔记 & edited in 2024.01.31
taoyiwei17_HNCS
学习笔记
更新日志upd2024.01.31写好文章基本内容upd2024.01.31发表于洛谷upd2024.02.01同步发表于CSDNupd2024.02.01同步发表于博客园cnblogsupd2024.02.01增加内容difficultPRO例题详解——P2746强连通分量(SCC,StronglyConnectedComponents)定义强连通有向图(DAG)中若其中两点xxx,yyy能彼此
- 强连通分量(dfs version)
yan_qiu_ynlchrz
算法整理算法
定义我们称有向图G=(V,E)G=(V,E)G=(V,E)是强连通的当且仅当对于GGG中任意两点u,vu,vu,v都存在一条uuu到vvv的路径和一条vvv到uuu的路径。如果G′G'G′为GGG的一个子图且G′G'G′是强连通的,则称G′G'G′是一个强连通子图。若G′G'G′满足极大性,则称G′G'G′是一个强连通分量。那么,如果我们将所有的强连通分量都缩成一个点,就可以得到一张DAGDAGD
- 算法竞赛——强连通分量
ThXe
ACM教程图论蓝桥杯ACM蓝桥杯ACM强连通分量
强连通分量强连通的定义是:有向图G强连通是指,G中任意两个结点连通。强连通分量(StronglyConnectedComponents,SCC)的定义是:极大的强连通子图也可以说,在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。DFS生成树DFS生成树是根据DFS搜索顺序构成的一颗生成树,形如(自上而下,自左而右):有向图的DFS生成树主要有4种边:树
- 图论 —— 图的连通性 —— Kosaraju 算法
Alex_McAvoy
#图论——图的连通性
【概述】Kosaraju算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图G和反图GT。【基本思想】1.对原图G进行DFS搜索,计算出各顶点完成搜索的时间f2.计算图的反图GT,对反图也进行DFS搜索,但此处搜索时顶点的访问次序不是按照顶点标号的大小,而是按照各顶点f值由大到小的顺序3.反图DFS所得到的森林即对应连通区域。原图原图进行DFS反图反图进行DFS上面提及原图G
- 图论(三):DFS的应用——拓扑排序与强连通分量
Sunburst7
算法图论
本节介绍如何使用DFS对有向无环图进行拓扑排序,以及求强连通分量的算法。目录一拓扑排序二拓扑排序的实现三强连通分量参考一拓扑排序什么是拓扑排序呢?对于一个有向无环图G=(V,E),拓扑排序是G中所有结点的一种线性次序,满足:如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面。拓扑排序可以理解为一系列要处理的事件的先后的顺序。边(u,v)代表完成v必须先完成u。注意的是:如果图G包含环路
- 2.4总结
哥别敲代码了
寒假预备役学习算法学习数据结构
前几天把洛谷有关并查集几个题目都尝试写了一下,自己提前去了解了一下最短路径(Floyed算法)和强连通分量这一方面的内容便于后续学习。连通(顾名思义就是把几个点相连,既可以从a到b,也可以从b到a(无向图))强连通示例图弱连通示例图下面这图里就有着三个强连通分量:把三个分量各自可以看成一个点,进行度的运算最短路径(Floyed算法)在写题的时候总是会遇见这种求最短路径的题,所以提前学习了一下(主要
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- 常用图算法实现--Spark
zealscott
使用Spark实现PageRank,强连通分量等图算法PageRank数据准备边:1211523242526273134251151261676871788189810914911011013111211112113141412151网页:123456789101112131415将这两个文件放入HDFS:hdfsdfs-mkdirinput/PageRankhdfsdfs-putlinks.tx
- 算法设计与分析
羊驼冲冲冲
算法学习
目录三个渐进记号分治策略①迭代法②递归树法③主定理法分治的应用堆堆应用动态规划动态规划应用贪心算法贪心算法应用回溯法回溯法应用图图的遍历BFSDFS记录时间戳拓扑排序强连通分量最小生成树流网络NP、P摊还分析三个渐进记号f(n)=O(g(n))其实是代表f(n)∈O(g(n))渐近上界记号OO(g(n))={f(n):存在正常量c和n0,使得对所有n≥n0,有0≤f(n)≤cg(n)}渐近下界记号
- 【C - 班长竞选】
贝耶儿
题意:大学班级选班长,N个同学均可以发表意见若意见为AB则表示A认为B合适,意见具有传递性,即A认为B合适,B认为C合适,则A也认为C合适勤劳的TT收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学。思路:从图中找出所有强连通分量进行缩点,那么首先某一个强连通分量中的人获得了该强连通分量中节点数目减一得票数。他们还会获得其他与之相连的强连通分量的票数。计算出每个节点对应的
- Tarjan-vDCC,点双连通分量,点双连通分量缩点
EQUINOX1
数据结构与算法算法c++数据结构职场和发展深度优先
前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍点双连通分量的相关内容。前置知识学习点双连通分量前,你需要先了解:关于Tarjan:SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解-CSDN博客关于缩点:SCC-Tarjan,缩点问题
- Tarjan-eDcc,边双连通分量问题,eDcc缩点问题
EQUINOX1
数据结构与算法图论数据结构c++算法
文章目录前言前置知识边双连通分量的定义推论Tarjan算法求解eDcc搜索树强连通分量的根时间戳追溯值算法原理算法流程代码实现eDcc缩点问题OJ详解题目描述原题链接思路分析AC代码前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍边连通分量的相关内容。前
- SCC-Tarjan,缩点问题
EQUINOX1
算法c++数据结构图搜索算法动态规划
文章目录前言引例什么是缩点?缩点的应用一、合并强连通子图为强连通图题目描述输入/输出格式原题链接题目详解二、集合间偏序关系题目描述输入/输出格式原题链接题目详解三、最大点权和路径题目描述输入/输出格式原题链接题目详解其他OJ练习前言图论中的缩点问题通常是指在有向图中,通过将强连通分量内的所有节点缩成一个节点,从而简化图的结构,这个过程称为缩点。这样做可以帮助我们分析和解决一些实际问题。阅读本文前如
- SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解
EQUINOX1
数据结构与算法算法深度优先开发语言c++数据结构
文章目录前言定义强连通强连通分量Tarjan算法原理及实现概念引入搜索树有向边的分类强连通分量的根时间戳追溯值算法原理从深搜到TarjanTarjan算法流程Tarjan算法代码实现OJ练习:前言强连通分量是图论中的一个重要概念,它在许多领域都有广泛的应用,如网络路由中识别环路,社交网络分析,编译器优化识别出代码中的循环结构,图像处理中识别出图像中的连通区域,从而进行图像分割和特征提取等。因而了解
- 数据结构—图的定义及基本术语
turbo夏日漱石
数据结构与算法数据结构
目录图的定义图的基本术语(1)子图:(2)无向完全图和有向完全图:(3)稀疏图和稠密图:(4)权和网:(5)邻接点:(6)度、入度和出度:(7)路径和路径长度:(8)回路或环:(9)简单路径、简单回路或简单环:(10)连通、连通图和连通分量:(11)强连通图和强连通分量:(12)连通图的生成树:(13)有向树和生成森林:图的定义图(Graph)G由两个集合V和E组成,记为G=(VE)1、其中V是顶
- 数据结构复盘——第六章:图
时生丶
数据结构数据结构图论
文章目录第一部分:图的一些专业术语1、有向图和无向图2、简单图和多重图3、完全图(也称简单完全图)4、稠密图和稀疏图5、邻接点6、连通,连通图和连通分量7、强连通,强连通图和强连通分量8、路径,路径长度和回路9、简单路径和简单回路10、距离11、生成树和生成森林12、子图13、度,入度和出度14、有向树15、权和网第二部分:图的存储方式1、邻接矩阵2、邻接表3、邻接多重表4、十字链表第二部分习题第
- 【算法每日一练]-图论(保姆级教程篇11 tarjan模板篇)无向图的桥 #无向图的割点 #有向图的强连通分量
亦歌希望你变强啊
图论图论算法深度优先数据结构c++
目录预备知识模板1:无向图的桥模板2:无向图的割点模板3:有向图的强连通分量讲之前先补充一下必要概念:预备知识无向图的【连通分量】:即极大联通子图,再加入一个节点就不再连通(对于非连通图一定两个以上的连通分量)无向图的【(割边或)桥】:即去掉该边,图就变成了两个连通子图无向图的【割点】:将该点和相关联的边去掉,图将变成两个及以上的子图注意:有割点不一定有桥,但是有桥一定有割点无向图的【边双连通图】
- 2023/5/30---个人总结---Tarjan算法
priority_key
算法
Tarjan算法Tarjan算法是基于深度优先搜索的算法,用于求解图的连通性问题。用途:Tarjan算法可以在线性时间内求出无向图的割点与桥,进一步地可以求解无向图的双连通分量;同时,也可以求解有向图的强连通分量、必经点与必经边。其中需要两个重要的数组low,dfn。dfn:作为这个点搜索的次序编号(时间戳),简单来说就是第几个被搜索到的。low:追溯值---(用来表示从当前节点x作为搜索树的根节
- 【UVALive】6776 2014WorldFinal G Metal Processing Plant【2-sat——bitset优化kosaraju求scc】
poursoul
2-sat强连通【SCC】双指针bitset
题目链接:MetalProcessingPlantbitset优化kosaraju,复杂度O(n^2/64),总复杂度O(n^4/64)。#includeusingnamespacestd;typedeflonglongLL;typedefpairpii;typedefunsignedlonglongULL;#defineclr(a,x)memset(a,x,sizeofa)constintMAX
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息