- 【python与机器学习3】感知机和门电路:与门,或门,非门等
奔跑的犀牛先生
机器学习python
目录1电子和程序里的与门,非门,或门,与非门,或非门,异或门1.1基础电路1.2所有的电路情况1.3电路的符号1.4各种电路对应的实际电路图2各种具体的电路2.1与门(andgate)2.1.1定义:A&B/AandB2.1.2andgate的写法2.1.3逻辑展开2.1.4电路图形2.1.5python里代码2.2或门(orgate)2.2.1定义2.2.2写法2.2.3逻辑展开2.2.4电路图
- python与机器学习2,激活函数
奔跑的犀牛先生
机器学习人工智能
目录1什么是激活函数?activationfunction1.1阈值1.2激活函数a(x),包含偏置值θ1.3激活函数a(x),包含偏置值b2激活函数1:单位阶跃函数2.1函数形式2.2函数图形2.3函数特点2.4代码实现这个单位阶跃函数3激活函数2sigmoid函数3.1函数形式3.2函数图形3.3函数特点3.3.1是一个连续函数,且是一个渐变的曲线3.3.2是连续区间的[0,1],可以天然等价
- 周四 2020-05-28 23:40 - 05:30 阴 11h40m
么得感情的日更机器
2020-5-28:高锟,光纤之父,壮年工程,老年高校教书育人。一时间记录0:005:30休息-睡觉5:305:305:503-日常-学习强国0:205:506:002-英语2-阅读0:106:006:372-技能-时间管理-日总结0:376:377:18饭早10:417:187:382-技能-时间管理-日总结0:207:389:292-编程工具-python与机器学习1:519:2910:131
- 【Python与机器学习 5-4】集成学习 Ensemble learning
zxfhahaha
机器学习python机器学习
集成学习(Ensemblelearning)通过构建并结合多个学习器来完成学习任务好的集成,个体学习器应“好而不同”:个体学习器要有一定的“准确性”,并且还要有“多样性”。集成学习分类集成学习可以分成同质集成和异质集成两大类。同质集成集成中包含同种类型的学习器->“基学习器”(baseleaner)异质集成集成中包含不同类型的学习器->“组件学习器”(componentleaner)集成策略首先来
- python与机器学习1,机器学习的一些基础知识概述(完善ing)
奔跑的犀牛先生
python机器学习
目录1AI,ML,DL,NN等等概念分类1.1人工智能、机器学习、深度学习、神经网络之间的关系:1.2人工智能的发展2ML机器学习的分类:SL,USL,RL2.1机器学习的分类2.2具体的应用举例2.3数据分类3关于阈值θ和偏移量b的由来4不同的激活函数5关于回归6关于分类7关于误差和梯度下降8最小二乘法修改θ9和矩阵计算,矩阵内积点乘的关系10深度学习11参考书籍1AI,ML,DL,NN等等概念
- Python与机器学习库Scikit-learn实战
心梓知识
python机器学习scikit-learn
Python是一种高级编程语言,拥有丰富的库和工具,使其成为机器学习领域中最受欢迎的语言之一。Scikit-learn是机器学习的一个开源Python库,它提供了许多算法和工具,可以帮助我们进行数据挖掘和机器学习。在本文中,我们将介绍Python和Scikit-learn的一些基础知识,并展示如何使用这两种工具进行机器学习实战。一、Python基础Python是一种解释性、跨平台的高级编程语言,支
- 《Python与机器学习实战》——第一章
皮皮大
第一章主要是个导论,在里面介绍了个简单的利用机器学习预测房价的栗子:数据预处理导入相关的模块和包,主要是numpy、pandas和matplotlib.pyplot。获取到两列关键的数据:size和price将size标准化处理标准化处理数学公式:做出size和price的散点图#导入相关的库importnumpyasnpimportpandasaspdimportmatplotlib.pyplo
- Python与机器学习:入门与基础
天天进步2015
机器学习pythonpython机器学习开发语言
机器学习是人工智能领域中一项重要的技术,而Python作为一种简单易用且功能强大的编程语言,成为了机器学习领域中的热门工具。本文将介绍Python与机器学习的基础知识,包括Python的优势、常用的机器学习库以及基本的机器学习算法。一、Python的优势:Python作为一种解释型语言,具有许多优势,使其成为机器学习领域的首选工具之一。1.简单易用:Python语法简洁清晰,易于学习和理解。即使是
- Python为什么成为人工智能的首选语言
王荣胜z
前言之前一直都是在学习Python与机器学习,深度学习。但是究竟为什么在众多的编程语言中选择Python作为人工智能的首选语言呢我一直不得而知,今天就来以我的理解来梳理下吧。首先在我不再赘述Python的前世今生,只是深入的说一下Python与人工智能的关系。一、从人工智能说起首先人工智能话题的热度再度升起应该是开始于一个引发全民狂欢的科技新闻:2016年到2017年,谷歌开发的围棋AI程序Alp
- 价值7000元的AI培训资料,拿走不谢
Nstream
这是我去年杭州培训的AI资料,价值7000元,包括tensorflow,keras实战源码,深度学习经典pdf书籍,知识图谱,规则引擎等,还有超全ppt,直接上图,给你惊喜。123关注我,私信发给你,或者搜索微信公众号“python与机器学习那点事”,后台回复”培训“,获取网盘连接
- python与机器学习
Bill_cc74
入门一、理念梳理python学习,边学边练,库准备学会找资源找数据:githubkaggle天池机器学习的数学学习算法的数学公式推导及应用二、何谓机器学习1、数据收集与预处理问题:如何收集数据(爬虫入门)数据预处理需要做哪些工作?2、特征选择与模型构建:问题定义及特征选取3、评估与预测:定性还是定量?如何改进?
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- python 多分类模型优化_【Python与机器学习】:利用Keras进行多类分类
weixin_39998462
python多分类模型优化
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多。这里我们利用Keras机器学习框架中的ANN(artificialneuralnetwork)来解决多分类问题。这里我们采用的例子是著名的UCIMachineLearningRepository中的鸢尾花数据集(irisflowerdataset)。1.编码输出便签多类分类问题与二类分类问题类似,需要将类别变量(catego
- python ai 项目_汇总!AI开发者必备的Python与机器学习开源项目推荐
庄比
pythonai项目
AIRX团队整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,可以广泛应用于其他领域。Scikit-learnScikit-le
- Github上Top20 Python与机器学习开源项目推荐
AIRX三次方
AIRX自然语言处理深度学习机器学习tensorflowcaffe
以下内容由公众号:AIRX社区(国内领先的AI、AR、VR技术学习与交流平台)整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,
- python和机械结合_《Python与机器学习》笔记(8)
weixin_39802020
python和机械结合
无监督学习1.基于聚类的“图像分割”实例编写图像分割图像分割:利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。图像分割技术已在实际生活中得到广泛的应用。例如:在机车检验领域,可以应用到轮毂裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医
- python自然语言处理评论_python与机器学习入门(10)NLP自然语言处理大量餐馆评论...
weixin_39640221
python自然语言处理评论
1.NLP是什么自然语言处理用于对文本的分类用于对中英文的互相翻译用于打字时候的自动纠错垃圾邮件过滤......1.1本次的目标这次学习是1000个英文的对一餐馆的评价,以及手动分类的结果,看一下是正面还是负面的评价。用NLP算法自动辨别评价的好坏,当在拿到一个评价时,就可以自动进行好坏的分类了。这次要做的就是对评论就行分类,完成以后可以拓展到文本文章英文报道等进行应用。1.2观察数据打开评论的t
- python与机器学习降维:PCA实现高维数据可视化和NMF人脸数据特征提取
Cachel wood
python机器学习和数据挖掘pythonsklearn机器学习
PCA实现高维数据可视化#建立工程,导入sklearn相关工具包importmatplotlib.pyplotaspltfromsklearn.decompositionimportPCAfromsklearn.datasetsimportload_iris#加载数据并进行降维data=load_iris()y=data.targetX=data.datapca=PC
- 朴素贝叶斯和SVM
king52113141314
机器学习入门概率论机器学习分类
朴素贝叶斯决策:详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解_nebulaf91的博客-CSDN博客_最大后验估计如何简单理解贝叶斯决策理论(BayesDecisionTheory)?-知乎参数估计|Python与机器学习如何通俗地理解概率论中的「极大似然估计法」?-知乎SVM:机器学习实战教程(八):支持向量机原理篇之手撕线性SVM支持向量机:OutliersTh
- 卷积神经网络识别车辆(自建+迁移学习)
Asionm
人工智能神经网络深度学习人工智能
卷积神经网络识别车辆(迁移模型)此为本人Python与机器学习第一学期大作业技术文档,在此分享给大家!源代码见个人的资源处,已经上传到CSDN卷积神经网络识别车辆卷积神经网络识别车辆(迁移模型)模型介绍resnet50自建模型程序介绍编程详细模型讨论模型训练参数的选择loss值随epoch次数的变化曲线resnet50自建立模型参数改变的讨论模型准确率模型采用的提高准确率的技术模型介绍对于模型的选
- python与机器学习
AI小丸子
Pythonpython机器学习人工智能
机器学习数据挖掘、CV、NLP、语音识别、统计学习、模式识别套路:1.数据收集处理;2.特征选择与模型构建;3.评估与预测站点:kagglegithubpython库科学计算库numpypandas线性回归例子:工资x1、年龄x2、贷款额度y关系关系:;预测一个值,这个值有区间。工资和年龄是特征;贷款额度是目标或者标签;拟合一个面分割的过程;y=a+b*x1+c*x2;a偏置参数对结果影响小;bc
- Python与机器学习之优化算法
为了更好的明天
Python与数据分析python机器学习
Python与机器学习之优化算法回顾圣经,在监督学习中优化算法是关键的步骤——分析模型并得到最优模型,才是最终的目的。基于梯度下降的学习对于一个简单的机器学习算法,每一个样例包含了一个(x,y)对,其中输入x和一个数值输出y。我们考虑损失函数l(y^,y),它描述了预测值y^和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数fw(x)的到的预测结果。我们的目标是寻找这样的
- 【CSDN软件工程师能力认证学习精选】如何入门Python与机器学习
高校俱乐部
CSDN软件工程师能力认证C5机器学习python
CSDN软件工程师能力认证(以下简称C系列认证)是由中国软件开发者网CSDN制定并推出的一个能力认证标准。C系列认证历经近一年的实际线下调研、考察、迭代、测试,并梳理出软件工程师开发过程中所需的各项技术技能,结合企业招聘需求和人才应聘痛点,基于公开、透明、公正的原则,甑别人才时确保真实业务场景、全部上机实操、所有过程留痕、存档不可篡改。我们每天将都会精选CSDN站内技术文章供大家学习,帮助大家系统
- python与机器学习(七)下——torchvision预训练模型测试真实图像分类
zhaociTang
python与机器学习python计算机视觉pytorch机器学习
任务要求:利用torchvision中的预训练CNN模型来对真实的图像进行分类,预测每张图片的top5类别。数据:real_image,class_index.json导入:importtorchfromtorchvisionimportmodels,datasets,transformsfromtorch.utils.dataimportDataLoader,DatasetfromPILimpo
- python与机器学习(七)上——PyTorch搭建LeNet模型进行MNIST分类
zhaociTang
python与机器学习pythonpytorch神经网络机器学习
任务要求:利用PyTorch框架搭建一个LeNet模型,并针对MNIST数据集进行训练和测试。数据集:MNIST导入:importtorchfromtorchimportnn,optimfromtorch.autogradimportVariablefromtorch.nnimportfunctionalasFfromtorchvisionimportdatasets,transformsfrom
- python与机器学习(六)——支持向量机(SVM) && 多层感知机(MLP)
zhaociTang
python与机器学习pythonsvmmlp支持向量机机器学习
在这次实验中,我们将尝试提取基本的图像特征并利用支持向量机或多层感知机算法对提取的特征进行图像分类。导入:importnumpyasnpimportmatplotlibfromscipy.ndimageimportuniform_filter数据加载:#读取提供的cifar10-mini数据集,data=np.load('cifar10-mini.npz')X_train=data['X_trai
- python与机器学习(五)——决策树
zhaociTang
python与机器学习python机器学习决策树
决策树(DecisionTree)通过sklearn库的决策树模型对iris数据进行多分类,并进行结果评估导入:fromsklearn.treeimportDecisionTreeClassifierfromsklearn.datasetsimportload_irisfromsklearnimportdatasetsfromsklearn.datasetsimportload_breast_ca
- python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC
zhaociTang
python与机器学习python机器学习数据分析
读取data.csv文件数据完成:1.分别计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数量2.分别计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值(F1-score)3.分别计算精确率、召回率、F1-score的宏平均(MacroAverage)并且计算准确率(Accuracy)4.绘制ROC曲线并计算曲线下面积AUC(可使用sklearn
- python与机器学习(二)Numpy / Pandas /矩阵相乘速度对比
zhaociTang
python与机器学习python机器学习pandasnumpy
NumPy(NumericalPython)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的官方文档:https://numpy.org/doc/stable/reference/index.htmlPandas是一个强大的分析结构化数据的工具集,它的使用基础是NumPy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提
- python与机器学习入门
zzhetao
Python实例
1、Anaconda的安装与使用。2、第一个机器学习样例:(1.3.1获取与处理数据)#导入需要用到的库importnumpyasnpimportmatplotlib.pyplotasplt#定义存储输入数据(x)和目标数据(y)的数组x,y=[],[]#遍历数据集,变量sample对应的正是一个个样本forsampleinopen("D:/1/_Data/prices.txt","r"):#“/
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号