- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- Python计算机视觉编程 第三章 图像到图像的映射
一只小小程序猿
计算机视觉pythonopencv
目录单应性变换直接线性变换算法仿射变换图像扭曲图像中的图像分段仿射扭曲创建全景图RANSAC拼接图像单应性变换单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表面。单应性变换具有很强的实用性,比如图像配准、图像纠正和纹理扭曲,以及创建全景图像。单应性变换本质上是一种二维到二维的映射,可以将一个平面内的点映射到另一个平面上的对应点。代码如下:impo
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- Python中cv2 (OpenCV, opencv-python)库的安装、使用方法demo最新详细教程
猫头虎
AI人工智能技术专栏pythonopencv开发语言计算机视觉语音识别目标检测神经网络
Python中cv2(OpenCV,opencv-python)库的安装、使用方法demo最新详细教程文章目录Python中cv2(OpenCV,opencv-python)库的安装、使用方法demo最新详细教程摘要引言正文OpenCV库概述安装OpenCV环境要求安装命令验证安装基础使用方法读取和显示图像图像处理示例❓常见问题解答小结参考资料表格总结总结和未来展望温馨提示摘要本文全面介绍了Pyt
- python绘制蕨菜叶分形
镜花照无眠
编程仿真#Pythonpython开发语言matplotlibnumpy
一花一叶一世界,一草一木一浮生.使用了四个不同的线性变换,根据概率选择其中一个变换并更新x和y坐标。然后将生成的绿色点绘制出来,形成一片蕨菜叶。importnumpyasnpimportmatplotlib.pyplotaspltdeffern_fractal(num_points):#初始化坐标x,y=0,0points=[]for_inrange(num_points):#生成随机数以选择变换
- pandas/numpy数据结构算法(之行列变换)(二) (tag:行列转换,迪卡尔积,内置函数,数据结构)
MrStubborn_aebe
目录:****1.Numpy-diag矩阵变换stack()/unstack()pd.pivot_table()pd.melt()groupby聚类算法mapping小技巧numpy.vectorize()**在这**里插入图片描述前言最近遇到很多需要迭代和归并数据的情况,一直以来的做法,都是循环主要的键,去进行后续操作。这是最典型的Python操作,然而还是上次提到的效率问题。记得之前朋友和我讲
- OpenCV计算机视觉学习(16)——仿射变换学习笔记
牛马程序员24
计算机视觉opencv学习
OpenCV计算机视觉学习(16)——仿射变换学习笔记如果需要其他图像处理的文章及代码,请移步小编的GitHub地址传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice在计算机视觉和图像处理中,仿射变换是一种重要的几何变换方法。它可以通过线性变换和平移来改变图像的形状和位置,广泛应用与图像校正,对象识别以及增强现实
- PyQt5 opencv-python
EQP Doctor
pythonqtopencv
importsysimportcv2importnumpyasnpfromPyQt5.QtWidgetsimportQApplication,QMainWindow,QPushButton,QVBoxLayout,QWidgetfromPyQt5.QtGuiimportQImage,QPixmapfromPyQt5.QtCoreimportQThread,pyqtSignalclassWorker
- 一些可能很有用的矩阵知识
黑洞是不黑
transformer数学理论矩阵线性代数人工智能
一些可有可无的矩阵知识酉矩阵酉矩阵一个服从正态分布的向量乘以一个酉矩阵,得到的向量仍然服从正态分布酉矩阵是一个复数矩阵,满足其转置的共轭等于其逆矩阵。当一个向量通过一个酉矩阵进行线性变换时,它的模长保持不变,只是发生了旋转和缩放。这意味着如果原始向量服从正态分布,变换后的向量仍将服从相同的正态分布。proof:proof:proof:当一个向量服从正态分布时,其概率密度函数(PDF)可以表示为:f
- 视频处理为视频帧出现cv2写入错误
尘埃里的苜蓿
opencvpython
问题:将视频处理为视频帧图片,执行cv2.imwrite("video"+"_%d.jpg"%frame_count,frame,params)语句时,Python出现报错。cv2.error:OpenCV(4.9.0)D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp:786:error:(-215
- opencv-python 图像增强十七:泊松图像融合
CV-King
opencvpython人工智能算法计算机视觉numpy
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、概述二,实现:前言在深入探讨图像处理与计算机视觉领域的过程中,我们不禁对图像融合技术的精妙与实用性感到着迷。图像融合不仅是一项融合了美学与科学的技术手段,它还巧妙地将来源各异、特性不同的图像数据整合为一体,从而生成视觉上连贯且富含信息的合成图像。本篇博客文章旨在详尽解析OpenCV库中的一项高级功能cv2.seamle
- 培养一两项无用的兴趣爱好,一定有用
霖小姐慢半拍
图片发自App学习Photoshop(一款图形图像处理软件)是今年年初定下的计划之一,直到最近才开始付诸行动,之所以拖到现在,是因为PS对于我来说,暂时是项「没用」的技能。又之所以决定赶在跨年前学会它的基本操作,一方面是因为年初定下过计划,我有一定程度的强迫症状,计划列表里的事情没完成,心里会觉得各种别扭。另一方面,更重要的一个原因,是因为它「没用」,所以我要去学。是的,你没看错,我年初定下学习P
- 【HuggingFace Transformers】BertIntermediate 和 BertPooler源码解析
CS_木成河
HuggingFace深度学习人工智能bertpython大模型Transformer
BertIntermediate和BertPooler源码解析1.介绍1.1位置与功能1.2相似点与不同点2.源码解析2.1BertIntermediate源码解析2.2BertPooler源码解析1.介绍1.1位置与功能(1)BertIntermediate位置:位于BertLayer的注意力层(BertSelfAttention)和输出层(BertOutput)之间。功能:它执行一个线性变换(
- opencv-python 函数总览
周子青
函数名函数Chapterone:图片读入图像cv2.imread(filename[,flags])→retval显示图像cv2.imshow(winname,mat)→Nonecv2.waitKey([delay])→retval创建窗口cv2.namedWindow(winname[,flags])→None摧毁窗口cv2.destroyWindow(winname)→Nonecv2.dest
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 2.2线性代数的力量
极客探索者
量化交易线性代数决策树机器学习人工智能
欢迎来到线性代数的世界,这里是量化交易的健身房,我们的目标是让你的大脑肌肉变得强大,以便在金融市场上大展拳脚。别担心,即使你在大学时数学成绩可能只比体育课成绩好那么一点点,我也会用最通俗易懂的方式,让你领略到线性代数的魅力。向量、矩阵与线性变换首先,让我们从向量开始。想象一下,你手里拿着一个箭头,这个箭头有方向也有长度,这就是向量。在量化交易中,我们可以把股票价格的变化想象成向量,方向代表涨跌,长
- 仿射变换与仿射函数
海棠未语
算法机器学习线性代数人工智能笔记
目录一、仿射变换二、仿射变换应用及示例三、仿射函数四、仿射函数应用及示例五、二者区别与联系一、仿射变换仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间,一种从Rn到Rm\mathbb{R}^n\到\mathbb{R}^mRn到Rm的映射。如下:一个对向量平移,与旋转放大缩小A的仿射映射为y⃗=AX⃗+b⃗\vec{y}=A\vec{X}+\ve
- 安卓开发使用seekBar改变ImageView中图片的色彩
我要最优解
android
前提:ColorMatrix类想要改变ImageView中图片的参数,我们需要先了解ColorMatrix类:ColorMatrix是Android中的一个类,它属于android.graphics包。它用于对图像进行颜色变换,包括但不限于亮度、对比度、饱和度、色调和色相的调整。ColorMatrix通过一个4x5的矩阵来定义线性变换,这个矩阵可以对图像的RGB颜色空间进行操作。他有以下几种常用操
- 基于OpenCV-Python实现人脸识别-----摄像头捕获人脸图像显示中文乱码问题
匹数
opencvpython人工智能
基于OpenCV-Python实现人脸识别时,为了使图像上显示识别到人员的中文名字,做了几次尝试,使用PIL.Image和OpenCV图像格式相互转换解决:使用OpenCV将图片灰度化,对加载的灰度化图使用分类器中的detectMultiScale()函数查找目标人脸,并使用for循环实现矩形框和圆形框框住查找到的人脸。再使用OpenCV中识别器face.LBPHFaceRecognizer()方
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- Pytorch nn.Module
霖大侠
pytorch人工智能python深度学习cnn神经网络卷积神经网络
一、torch.nn简介torch.nn是PyTorch中用于构建神经网络的模块。它提供了一系列的类和函数,用于定义神经网络的各种层、损失函数、优化器等。torch.nn提供的类:Module:所有神经网络模型的基类,用于定义自定义神经网络模型。Linear:线性层,进行线性变换。Conv2d:二维卷积层。RNN,LSTM,GRU:循环神经网络层,分别对应简单RNN、长短时记忆网络(LSTM)、门
- 神经网络算法浅谈
dami_king
神经网络算法深度学习人工智能AIGC
神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的人工神经元相互连接形成复杂网络结构,用于解决各种机器学习和人工智能问题。以下是对神经网络算法的浅析:一、网络结构神经网络的核心在于其层次结构,其中包括:输入层(InputLayer):接收原始特征数据。隐藏层(HiddenLayers):包含若干层,每层包含多个神经元,每个神经元接收到上一层的输出作为输入,并通过加权和与非线性变换(激活函数)
- opencv-python 图像 二
夏树的宝马
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_drawing_functions/py_drawing_functions.html直线cv2.line(img,(起始点),(终点),(颜色),px大小)颜色为bgr>>>importcv2>>>importnumpyasnp>>>img=
- 计算机科学引论2021英文,计算机科学引论= Computing Essentials : 英文
弗雷德里克·雷蒙德
计算机科学引论2021英文
摘要:本书概括地介绍了计算机科学与信息技术的主要领域,各种应用及其对社会的影响.全书由15章和一些附录组成,主要内容包括:信息技术概述;因特网,万维网与电子商务;基本应用软件(包括字处理,表处理,数据库管理系统,文字和图形演示,集成化软件包等);专用软件(包括图形图像处理,音频与视频,多媒体,Web创作以及虚拟现实和专家系统等新兴应用);操作系统等系统软件;计算机系统组成部件;输入/输出及相关外部
- python中绘制数组直方图一维数组划分10组_opencv-python 绘制直方图和均衡化
weixin_39607935
直方图什么是直方图?一个数字图像是由像素点组成的,每个像素点在计算机里都是以二进制代码存储的,通常都是8bit编码,也就是说一个像素的可能值是00H到FFH,如果是灰度图像,那么每个像素值便代表它的灰度值,如果是RGB三通道图像,每个像素值是一个数组比如[60,40,244]它代表每个通道的灰度值。直方图用来统计每个灰度值出现的次数。也就是每个灰度值出现的频数,横坐标是像素点的值,比如8bit编码
- opencv-python灰度直方图详解
Vertira
opencvopencvpython直返图
1,直方图的概念图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。图像灰度直方图:一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况
- OpenCV-Python无代码提示解决(步骤详细)
离谱270
python开发语言opencv
2023年5月8日,Python、PyCharm、OpenCV-Python均为最新版本,刚开始学习就遇到了一个严重的问题,cv2没有代码提示!查了非常多资料:1.改__init__.py2.将OpenCV重新下载3.将cv2.pyd放入同文件下的data文件夹内4.5.importcv2.cv2ascv2以上的方法都无效(对本人而言)有效的方法:先打开设置,再找到PythonInterprete
- 【论文精读】SimCLR2
None-D
自监督学习机器学习人工智能deeplearning计算机视觉算法深度学习
摘要本文提出了一个半监督学习框架,包括三个步骤:无监督或自监督的预训练;有监督微调;使用未标记数据进行蒸馏。具体改进有:发现在半监督学习(无监督预训练+有监督微调)中,对于较大的模型只需采用少量有标签数据就可实现良好的结果证明了SimCLR中用于半监督学习的卷积层之后非线性变换(投影头)的重要性。更深的投影头能提高分类线性评估指标,也能提高从投影头的中间层进行微调时的半监督性能对于特定目标,过大的
- OpenCV-Python学习(九):图像滤波
星光下的胖子
目录:1.滤波的相关概念2.卷积操作3.平滑操作(低通滤波)均值滤波中值滤波高斯滤波双边滤波4.锐化操作(高通滤波)自定义锐化核USM锐化(UnsharpMask)5.梯度操作(高通滤波)Sobel算子Scharr算子Laplacian算子一、滤波的概念滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。图像滤波是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处
- 线性代数第9版英文pdf_线性代数(英文版·第9版)
weixin_39726044
线性代数第9版英文pdf
《线性代数(英文版·第9版)》结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。StevenJ.Leon1971年于密歇根州立大学数学系获得博士学位,现为马萨诸塞大学达特茅斯分校数学系首席教授,
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><