CodeForces 482C Game with Strings

意甲冠军:

n一定长度m串  隐藏的字符串相等的概率  然后,你猜怎么着玩家隐藏的字符串  的询问字符串的一个位置  再不断的知道一些位置后  游戏者就能够确定藏起来的串是什么  问  游戏者的期望步数

思路:

能够说是一道概率题  也能够说是期望题  总之感觉题目不错…

首先假设我们枚举藏起来的串是哪个(复杂度n)  然后利用状压去dp维护猜某些位的状态的概率  以及对于那个状态剩下哪些串是无法辨别的(复杂度m*2^m)  那么复杂度为 O(nm2^m) 这样就会TLE

接着思考  事实上问题不是出在状压的2^m上(它已经非常优秀了)  既然不去掉状压  那么辅助状态转移的m也扔不掉  我们仅仅能想方法避免那个n  使复杂度达到 O(m2^m)

然后我们来确定方案:

我们用状压的二进制数表示m个位置有哪些位置已经被揭示了  那么我们能够利用dp求出对于每一个状态的概率(或者称为从一位都不揭示到揭示到如今这样的状态的期望)  那么对于如今这样的状态  假设已经能够猜到藏起来的是哪个串  那么我们就不须要再猜了  否则至少要猜下一步  那么这个“下一步”对于整个游戏期望步数的贡献就为dp[状态]*1

如今问题就在  怎样推断这个状态是不是猜完了

事实上这个问题能够用dp打表出  对于已经猜了一些位置后  有哪些串是如今的状态分辨不出来的(代码中的f数组)

那么假设f为0  表示已经猜到了  假设不为0则里面至少有2个1存在  则对于当中的每一个1  假设藏起来的正是1相应的那个串  则还须要1步  那么这1步对答案的贡献就是刚才说的dp[]*1了

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<bitset>
using namespace std;
typedef long long LL;
#define N 55
#define M 25

int n, len;
char str[N][M];
LL f[(1 << 20) + 10], bin[N];
double ans[(1 << 20) + 10];
double res;

int main() {
	int i, j, k, c;
	bin[0] = 1;
	for (i = 1; i < N; i++)
		bin[i] = (bin[i - 1] << 1);
	scanf("%d", &n);
	for (i = 0; i < n; i++)
		scanf("%s", str[i]);
	len = strlen(str[1]);
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			if (i != j) {
				int same = 0;
				for (k = 0; k < len; k++) {
					if (str[i][k] == str[j][k])
						same |= bin[k];
				}
				f[same] |= bin[j];
			}
		}
	}
	for (i = bin[len] - 1; i >= 0; i--) {
		for (j = 0; j < len; j++) {
			if (i & bin[j]) {
				f[i ^ bin[j]] |= f[i];
			}
		}
	}
	ans[0] = 1;
	for (i = 0; i < bin[len]; i++) {
		for (c = j = 0; j < len; j++) {
			if (i & bin[j])
				c++;
		}
		for (j = 0; j < len; j++) {
			if (!(i & bin[j]))
				ans[i | bin[j]] += ans[i] / (len - c);
		}
		for (j = 0; j < n; j++) {
			if (f[i] & bin[j])
				res += ans[i];
		}
	}
	printf("%.10f\n", res / n);
	return 0;
}


版权声明:本文博客原创文章。博客,未经同意,不得转载。

你可能感兴趣的:(codeforces)