% 这是MATLAB里面的pchip.m文件。这里把它的凝视改写成汉语,主要是想弄清楚它是怎么计算在节点处的导数的。 function v = pchip(x,y,xx) %输入:n个插值节点的纵坐标向量x;横坐标向量y;插值点xx。 %输出:分段三次Hermite插值结果。
% PCHIP Piecewise Cubic Hermite Interpolating Polynomial. % PP = PCHIP(X,Y)为X处的值Y提供了一种特定的保形分段三次厄尔米特插值(shape-preserving piecewise cubic Hermite interpolant) % 的分段多项式形式,在后面的PPVAL和样条功能UNMKPP(spline utility UNMKPP)将用到这个函数。 % X必须是个向量。
% 假设Y是个向量,则Y的第j个元素Y(j)被取为和X的第j个元素X(j)匹配的值,因此Y和X的长度必须一样。 % 假设Y是一个矩阵,或者N维数组,则Y(:,...,:,j)被取为和X(j)相匹配的值,因此Y的最后一维必须等于length(X). % YY = PCHIP(X,Y,XX)和YY = PPVAL(PCHIP(X,Y),XX)是一样的,因此在YY中给出了在XX处的插值。 % PCHIP插值函数p(x)满足: % 在每一个子区间X(k) <= x <= X(k+1),p(x)都是三阶Hermite插值多项式(给定插值点和两个端点的斜率)。 % 因而。p(x) interpolates Y,也就是说。p(X(j)) = Y(:,j),而且一阶导数Dp(x)是连续的,可是 % 二阶导数D^2p(x)可能不是连续的;在X(j)处可能会出现跳跃. % 在X(j)处的斜率的选取方法。确保了p(x)是"shape preserving"和"respects monotonicity"的, % 这意味着,在那些数据是单调的区间里,p(x)也是单调的;在那些数据是局部极值(local extremum)的点, % p(x)也取局部极值。 % % PCHIP与SPLINE的对照: % SPLINE提供的函数s(x)的构建方法和PCHIP里面的函数p(x)全然同样,仅仅只是在X(j)处的斜率的选择方法不一样, % SPLINE函数的s(x)在X(j)的二阶导数D^2s(x)也是连续的,这导致了例如以下结果: % SPLINE更加光滑。也就是说。D^2s(x)是连续的。
% 假设数据是一个光滑函数的值。则SPLINE更加精确。 % 假设数据不是光滑的,则PCHIP没有overshoots,也不太震荡(less oscillation)。 % PCHIP建立的难度较小(is less expensive to set up). % 这两种函数预计的难度是一样的。 % 样条比pchip光滑,样条的两阶导数连续。而pchip一阶导数连续。不连续的两阶导数隐含着不连续的曲率。
人的眼睛能够检測出图形上曲率的不连续。还有一方面,pchip是保形状的,而样条不一定保形状。 % % 样例: % x = -3:3; % y = [-1 -1 -1 0 1 1 1]; % t = -3:.01:3; % plot(x,y,'o',t,[pchip(x,y,t); spline(x,y,t)]) % legend('data','pchip','spline',4) % % Class support for inputs x, y, xx: % float: double, single % % 还可參见INTERP1, SPLINE, PPVAL, UNMKPP. % 參考文献: % F. N. Fritsch and R. E. Carlson, "Monotone Piecewise Cubic % Interpolation", SIAM J. Numerical Analysis 17, 1980, 238-246. % David Kahaner, Cleve Moler and Stephen Nash, Numerical Methods % and Software, Prentice Hall, 1988. % % Copyright 1984-2004 The MathWorks, Inc. % $Revision: 1.7.4.4 $ $Date: 2004/03/02 21:47:53 $ % 检验数据的可接受性,假设不可接受,则对其进行适当的调整 [x,y,sizey] = chckxy(x,y); %chckxy返回三个变量:x,y,和sizey。 可是不知道chckxy是什么意思。 n = length(x); %n为向量x的长度。也就是后面要用的节点数目。 h = diff(x); %diff表示把向量x的相邻元素相减。
得到h=[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)] m = prod(sizey); % %确保插值点是实数 if nargin==3 && any(~isreal(reshape(xx,numel(xx),1))) error('MATLAB:pchip:ComplexInterpPts',... 'The interpolation points should be real.') end %计算斜率 del = diff(y,1,2)./repmat(h,m,1); % diff(y,n,dim)是在标量dim指定的维度上进行n次差分。假设阶数n等于或超过第dim维的长度,则diff返回一个空的数组。 % 比如y=[1 3 4 6 9 10 8 12];则diff(y,1,2)=[2 1 2 3 1 -2 4]; % repmat(h,m,1)把矩阵h在纵向方面复制m次。二者相除就是一阶差商。 slopes = zeros(size(y)); % 设定一个全是0的向量。准备存放斜率数值。 for r = 1:m slopes(r,:) = pchipslopes(x,y(r,:),del(r,:)); %调用函数见下。 end % 对上述值x,y,和斜率计算分段三次Hermite插值 v = pwch(x,y,slopes,h,del); v.dim = sizey; if nargin == 3 % if values are wanted instead, provide them v = ppval(v,xx); end % 以下是计算节点处的斜率的函数pchipslopes------------------------------------------ function d = pchipslopes(x,y,del) %PCHIPSLOPES Derivative values for shape-preserving Piecewise Cubic Hermite Interpolation. % d = pchipslopes(x,y,del)计算一阶导数d(k)=P'(x(k)). % 特殊情况:n=2,此时使用线性插值. n = length(x); if n==2 d = repmat(del(1),size(y)); return end % 内点(interior points)处的斜率. % 假设第k个节点处的左右差商del(k-1)和del(k)符号同样,则设定d(k)等于二者的加权平均。
% 假设第k个节点处的左右差商del(k-1)和del(k)符号相反,或者当中一个为0。则设定d(k)=0. d = zeros(size(y)); if isreal(del) %假设del是实数。
k = find(sign(del(1:n-2)).*sign(del(2:n-1)) > 0); %则把其左右差商同号的那个序号赋值给k. else k = find(~(del(1:n-2) == 0 & del(2:n-1) == 0)); end h = diff(x); hs = h(k)+h(k+1); w1 = (h(k)+hs)./(3*hs); w2 = (hs+h(k+1))./(3*hs); dmax = max(abs(del(k)), abs(del(k+1))); dmin = min(abs(del(k)), abs(del(k+1))); d(k+1) = dmin./conj(w1.*(del(k)./dmax) + w2.*(del(k+1)./dmax)); %函数congj(a)返回数组a的每一个元素的共轭复数组成的数组。 % 区间端点处的斜率(end points). % Set d(1) and d(n) via non-centered, shape-preserving three-point formulae. d(1) = ((2*h(1)+h(2))*del(1) - h(1)*del(2))/(h(1)+h(2)); if isreal(d) && (sign(d(1)) ~= sign(del(1))) d(1) = 0; elseif (sign(del(1)) ~= sign(del(2))) && (abs(d(1)) > abs(3*del(1))) d(1) = 3*del(1); end d(n) = ((2*h(n-1)+h(n-2))*del(n-1) - h(n-1)*del(n-2))/(h(n-1)+h(n-2)); if isreal(d) && (sign(d(n)) ~= sign(del(n-1))) d(n) = 0; elseif (sign(del(n-1)) ~= sign(del(n-2))) && (abs(d(n)) > abs(3*del(n-1))) d(n) = 3*del(n-1); end
|