这道题很好想, 离线, 按询问的x排序从小到大, 然后用并查集维护连通性, 用平衡树维护连通块的山的权值, 合并就用启发式合并.时间复杂度的话, 排序是O(mlogm + qlogq), 启发式合并是O(nlog²n), 询问是O(qlogn).
-------------------------------------------------------------------
#include<bits/stdc++.h>
#define rep(i, n) for(int i = 0; i < n; ++i)
#define clr(x, c) memset(x, c, sizeof(x))
using namespace std;
const int maxn = 100009;
const int maxq = 500009;
struct Node {
Node* ch[2];
int s, r, v;
Node():r(rand()) {}
inline void upd() {
s = ch[0]->s + ch[1]->s + 1;
}
} pool[maxn * 20], *pt = pool, *root[maxn], *null;
Node* newNode(int v) {
pt->ch[0] = pt->ch[1] = null;
pt->s = 1, pt->v = v;
return pt++;
}
void init() {
null = pt++;
null->s = 0;
null->ch[0] = null->ch[1] = null;
}
void rotate(Node* &t, int d) {
Node* h = t->ch[d ^ 1];
t->ch[d ^ 1] = h->ch[d];
h->ch[d] = t;
t->upd(), h->upd();
t = h;
}
void insert(Node* &t, int v) {
if(t == null)
t = newNode(v);
else {
int d = v <= t->v;
insert(t->ch[d], v);
if(t->ch[d]->r > t->r) rotate(t, d ^ 1);
}
t->upd();
}
void del(Node* &t, int v) {
int d = v == t->v ? -1 : v < t->v;
if(d == -1) {
if(t->ch[0] != null && t->ch[1] != null) {
int h = t->ch[0]->r > t->ch[1]->r;
rotate(t, h), del(t->ch[h], v);
} else
t = t->ch[0] == null ? t->ch[1] : t->ch[0];
} else
del(t->ch[d], v);
if(t != null) t->upd();
}
int select(Node*t, int k) {
if(k > t->s) return -1;
for(; ;) {
int s = t->ch[0]->s;
if(k == s + 1) return t->v;
if(k > s)
k -= s + 1, t = t->ch[1];
else
t = t->ch[0];
}
}
inline int read() {
char c = getchar();
for(; !isdigit(c); c = getchar());
int ans = 0;
for(; isdigit(c); c = getchar())
ans = ans * 10 + c - '0';
return ans;
}
int p[maxn];
int find(int x) {
return x == p[x] ? x : p[x] = find(p[x]);
}
inline void unite(int x, int y) {
int a = find(x), b = find(y);
p[a] = b;
if(root[a] != root[b]) {
if(root[a]->s > root[b]->s) swap(a, b);
while(root[a] != null) {
insert(root[b], root[a]->v);
del(root[a], root[a]->v);
}
root[a] = root[b];
}
}
struct Q {
int x, lim, k, pos;
inline void Read(int p) {
x = read() - 1, lim = read(), k = read(), pos = p;
}
bool operator < (const Q &t) const {
return lim < t.lim;
}
} A[maxq];
struct edge {
int u, v, w;
inline void Read() {
u = read() - 1, v = read() - 1, w = read();
}
bool operator < (const edge &e) const {
return w < e.w;
}
} E[maxq];
int ans[maxq];
int main() {
freopen("test.in", "r", stdin);
init();
int n, m, q, _p = 0;
cin >> n >> m >> q;
rep(i, n) root[i] = newNode(read());
rep(i, n) p[i] = i;
rep(i, m) E[i].Read(); sort(E, E + m);
rep(i, q) A[i].Read(i); sort(A, A + q);
rep(i, q) {
Q* h = A + i;
for(; E[_p].w <= h->lim && _p < m; _p++) unite(E[_p].u, E[_p].v);
ans[h->pos] = select(root[find(h->x)], h->k);
}
rep(i, q) printf("%d\n", ans[i]);
return 0;
}
-------------------------------------------------------------------
3545: [ONTAK2010]Peaks
Time Limit: 10 Sec
Memory Limit: 128 MB
Submit: 816
Solved: 231
[
Submit][
Status][
Discuss]
Description
在Bytemountains有N座山峰,每座山峰有他的高度h_i。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。
Input
第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。
Output
Sample Input
10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
1 5 6
1 5 8
8 9 2
Sample Output
6
1
-1
8
HINT
【数据范围】
N<=10^5, M,Q<=5*10^5,h_i,c,x<=10^9。
Source