二元复合函数求二阶偏导

二元复合函数求二阶偏导

设 z = F ( x + f ( 2 x − y ) , y ) , 其 中 F , f 二 阶 连 续 偏 导 数 , 求 ∂ 2 z ∂ y 2 . 设z = F(x+f(2x-y),y),其中F,f二阶连续偏导数,求\frac{\partial ^2 z}{\partial y^2}. z=F(x+f(2xy),y),F,fy22z.

解:
∂ z ∂ y = F 1 ′ f ′ ⋅ ( − 1 ) + F 2 ′ \frac{\partial z}{\partial y} = F'_1f'·(-1)+F'_2 yz=F1f(1)+F2
∂ 2 z ∂ y 2 = ∂ F 1 ′ f ′ ⋅ ( − 1 ) ∂ y + ∂ F 2 ′ ∂ y \frac{\partial ^2z}{\partial y^2} = \frac{\partial F'_1f'·(-1)}{\partial y} + \frac{\partial F'_2}{\partial y} y22z=yF1f(1)+yF2
其中:
∂ F 1 ′ f ′ ⋅ ( − 1 ) ∂ y = f ′ ( F 11 ′ ′ f ′ − F 12 ′ ′ ) + F 1 ′ f ′ ′ \frac{\partial F'_1f'·(-1)}{\partial y} = f'(F''_{11}f'-F''_{12}) + F'_1f'' yF1f(1)=f(F11fF12)+F1f
∂ F 2 ′ ∂ y = F 21 ′ ′ f ′ ⋅ ( − 1 ) + F 22 ′ ′ \frac{\partial F'_2}{\partial y} = F''_{21}f'·(-1) + F''_{22} yF2=F21f(1)+F22
综上:
∂ 2 z ∂ y 2 = F 11 ′ ′ ( f ′ ) 2 − 2 F 12 ′ ′ f ′ + F 1 ′ f ′ ′ + F 22 ′ ′ \frac{\partial ^2z}{\partial y^2} = F''_{11}(f')^2-2F''_{12}f' + F'_1f'' + F''_{22} y22z=F11(f)22F12f+F1f+F22

你可能感兴趣的:(高等数学,抽象代数,线性代数)