首先有什么问题可以去找官方文档
conda create — conda 4.14.0.post39+de3db7f75 documentation
环境管理
查看conda环境管理命令帮助信息
conda create --help
创建出来的虚拟环境所在的位置为conda路径下的env/文件下,,默认创建和当前python版本一致的环境.
conda create --name envname
创建新环境时指定python版本为3.6,环境名称为python36
conda create --name python36 python=3.6
切换到环境名为python36的环境(默认是base环境),切换后可通过python -V查看是否切换成功
conda activate python36
返回前一个python环境
conda deactivate
显示已创建的环境,会列出所有的环境名和对应路径
conda info -e
删除虚拟环境
conda remove --name envname --all
指定python版本,以及多个包
conda create -n envname python=3.4 scipy=0.15.0 astroib numpy
查看当前环境安装的包
conda list ##获取当前环境中已安装的包
conda list -n python36 ##获取指定环境中已安装的包
克隆一个环境
# clone_env 代指克隆得到的新环境的名称
# envname 代指被克隆的环境的名称
conda create --name clone_env --clone envname
#查看conda环境信息
conda info --envs
构建相同的conda环境(不通过克隆的方法)
# 查看包信息
conda list --explicit
# 导出包信息到当前目录, spec-file.txt为导出文件名称,可以自行修改名称
conda list --explicit > spec-file.txt
# 使用包信息文件建立和之前相同的环境
conda create --name newenv --file spec-file.txt
# 使用包信息文件向一个已经存在的环境中安装指定包
conda install --name newenv --file spec-file.txt
查找包
#模糊查找,即模糊匹配,只要含py字符串的包名就能匹配到
conda search py
##查找包,--full-name表示精确查找,即完全匹配名为python的包
conda search --full-name python
安装更新删除包
##在当前环境中安装包
conda install scrapy
##在指定环境中安装包
conda install -n python36 scrapy
##在当前环境中更新包
conda update scrapy
##在指定环境中更新包
conda update -n python36 scrapy
##更新当前环境所有包
conda update --all
##在当前环境中删除包
conda remove scrapy
##在指定环境中删除包
conda remove -n python2 scrapy
Python管理
查找可以安装的python
# 查找所有名称包含python的包
conda search python
# 查找全名为python的包
conda search --full-name python
安装不同版本的Python
#在不影响当前版本的情况下,新建环境并安装不同版本的python
#新建一个Python版本为3.6 名称为 py36 的环境
conda create -n py36 python=3.6 anaconda
#注:将py36替换为您要创建的环境的名称。 anaconda是元数据包,带这个会把base的基础包一起安装,不带的话新环境只包含python3.6相关的包。 python = 3.6是您要在此新环境中安装的软件包和版本。 这可以是任何包,例如numpy = 1.7,或多个包。
#然后激活想要使用的环境即可
conda activate py36
#更新Python
# 普通的更新python
conda update python
# 将python更新到另外一个版本/安装指定版本的python
conda install python=3.6
conda自身
查看当前conda工具版本号
conda --version
查看包括版本的更多信息
conda info
更新conda至最新版本
conda update conda
查看conda帮助信息
conda -h
分享环境
如果你想把你当前的环境配置与别人分享,这样ta可以快速建立一个与你一模一样的环境(同一个版本的python及各种包)来共同开发/进行新的实验。一个分享环境的快速方法就是给ta一个你的环境的.yml文件。
首先通过activate target_env要分享的环境target_env,然后输入下面的命令会在当前工作目录下生成一个environment.yml文件
conda env export > environment.yml
小伙伴拿到environment.yml文件后,将该文件放在工作目录下,可以通过以下命令从该文件创建环境
conda env create -f environment.yml