题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2433
题意:若干个矩形排成一排(同一个x之上最多有一个矩形),矩形i和i+1相邻。给定两点S和T,两点均在矩形内。求S到T的最短路径。只能在矩形内部走。
思路:首先,S到T若有转弯,必定是在矩形 的顶点处转弯。因此,只要建立任意两可达顶点(包含S和T)之间距离求最短路即可。若暴力枚举任意两点再判是否可达复杂度O(n^3)。优化。枚举起点 a,从左向右扫遍矩形,利用叉积维护关于该点a的上下界,在该范围之内的点均可达。
struct point { int x,y; point(){} point(int _x,int _y) { x=_x; y=_y; } void get() { RD(x,y); } point operator-(point a) { return point(x-a.x,y-a.y); } i64 operator*(point a) { return (i64)x*a.y-(i64)y*a.x; } double len() { return sqrt(1.0*x*x+1.0*y*y); } }; struct node { point a,b,c,d; void get() { int x1,y1,x2,y2; RD(x1,y1); RD(x2,y2); a=point(x1,y1); b=point(x1,y2); c=point(x2,y1); d=point(x2,y2); } int contain(point p) { return a.x<=p.x&&p.x<=c.x&&a.y<=p.y&&p.y<=b.y; } }; double f[N],v,ans; node a[N]; point S,T; int n; double dis(point a,point b) { a=a-b; return a.len(); } i64 cross(point a,point b,point c) { return (b-a)*(c-a); } int isCross(point a,point b,point c,point d) { if(b.x<a.x) return 0; return cross(a,c,b)<=0&&cross(a,d,b)>=0; } void update(point S,int now,double p) { if(p>=dinf) return; point up=point(S.x,S.y+1); point down=point(S.x,S.y-1); point l,r; int i; for(i=now;i<n;i++) { if(isCross(S,a[i].a,up,down)) f[i*4]=min(f[i*4],p+dis(S,a[i].a)); if(isCross(S,a[i].b,up,down)) f[i*4+1]=min(f[i*4+1],p+dis(S,a[i].b)); if(isCross(S,a[i].c,up,down)) f[i*4+2]=min(f[i*4+2],p+dis(S,a[i].c)); if(isCross(S,a[i].d,up,down)) f[i*4+3]=min(f[i*4+3],p+dis(S,a[i].d)); if(a[i].contain(T)&&isCross(S,T,up,down)) ans=min(ans,p+dis(S,T)); if(i+1<n) { l=point(a[i].c.x,max(a[i].c.y,a[i+1].a.y)); r=point(a[i].d.x,min(a[i].d.y,a[i+1].b.y)); if(a[i].c.x==S.x) { if(l.y>S.y||S.y>r.y) { f[(i+1)*4]=min(f[(i+1)*4],p+dis(S,a[i+1].a)); f[(i+1)*4+1]=min(f[(i+1)*4+1],p+dis(S,a[i+1].b)); return; } } else { if(cross(S,down,l)>0) down=l; if(cross(S,up,r)<0) up=r; if(cross(S,up,down)>0) return; } } } } int main() { RD(n); int i; FOR0(i,n) a[i].get(); S.get(); T.get(); RD(v); if(S.x>T.x) swap(S,T); FOR0(i,4*n) f[i]=dinf; ans=dinf; FOR0(i,n) { if(a[i].contain(S)) update(S,i,0); update(a[i].a,i,f[i*4]); update(a[i].b,i,f[i*4+1]); update(a[i].c,i,f[i*4+2]); update(a[i].d,i,f[i*4+3]); } PR(ans/v); }