- 简单介绍 NVIDIA推出的图形处理单元(GPU)架构“安培架构“
神仙约架
人工智能架构安培安培架构NVIDIA
概念"安培架构"(AmpereArchitecture)是NVIDIA推出的一款图形处理单元(GPU)架构,它是继图灵架构之后的下一代产品。安培架构最初在2020年发布,以其高性能和高效率而闻名,广泛应用于游戏、专业视觉、数据中心、人工智能(AI)和自动驾驶等领域。特点安培架构的主要特点包括:1.更高的性能和效率-安培架构通过改进的执行单元和更高的时钟频率,提供了比前代图灵架构更高的性能和能效。2
- C++ MFC添加RichEditControl控件后,程序启动失败
澄澈天空
mfcc++
通常,软件界面显示LOG时,需要使用文本控件,然而,在完成添加RichEditControl控件后,启动调试,程序无法启动,不会弹出对话框我当前使用的是控件RichEdit2.0版本,主要是未正确的加载RichEdit控件库解决办法:在InitInstance()函数中添加以下代码来加载RichEdit控件库:在以上函数添加控件初始化后,程序可以正常启动了。
- springboot 如何实现单点登录
lozhyf
工作面试学习springboot后端java
单点登录(SingleSign-On,SSO)允许用户使用一组凭证(如用户名和密码)登录到多个相关的应用系统中,而无需为每个系统单独进行身份验证。在SpringBoot中实现单点登录有多种方式,下面将分别介绍基于OAuth2.0和基于CAS(CentralAuthenticationService)这两种常见的实现方法。基于OAuth2.0实现单点登录1.项目依赖首先,在pom.xml中添加Spr
- ChatTTS-ui模型概述、安装及使用方法说明
醉心编码
人工智能基础技术类脚本基础TTS大模型人工智能
ChatTTS-ui模型概述、安装及使用方法说明一、ChatTTS-ui模型概述二、ChatTTS-ui的技术优势三、ChatTTS-ui的安装与配置1.安装Python和Git环境2.下载ChatTTS-ui源码3.创建并激活虚拟环境4.安装依赖5.启动应用四、ChatTTS-ui的高级功能1.API调用2.音色自定义3.细粒度控制4.GPU加速五、ChatTTS-ui的应用场景六、ChatTT
- 利用Python imaplib和email模块 读取邮件文本内容及附件内容
aobian2884
python
python使用imap接收邮件的过程探索https://www.cnblogs.com/yhlx/archive/2013/03/22/2975817.html#!encoding:utf8'''环境:Win1064位Python2.7.5参考:http://www.pythonclub.org/python-network-application/email-formathttp://blog
- Ollama 部署指南(Windows)
圣心
windows
文章来源:Windows部署文档--Ollama中文文档|Ollama官方文档OllamaWindows欢迎使用OllamaforWindows。不再需要WSL!Ollama现在作为本机Windows应用程序运行,包括NVIDIA和AMDRadeonGPU支持。安装OllamaforWindows后,Ollama将在后台运行,并且这ollama命令行在cmd,powershell或您的最爱终端应用
- SuperSplat 2.0:Web端轻量级3D Gaussian Splats处理与可视化工具
花生糖@
AIGC学习资料库3d3D方向工具库创业库三维建模
随着增强现实(AR)和虚拟现实(VR)技术的发展,对高效、便捷的3D内容创建和分发工具的需求日益增长。SuperSplat2.0正是这样一款专注于3DGaussianSplats(3DGS)处理和可视化的开源工具,特别适合需要处理3D扫描数据的创业者和开发者。本文将深入探讨SuperSplat2.0的核心功能及其商业价值。产品定位与价值1.面向3DGaussianSplats技术的开源平台Supe
- 三甲医院网络架构与安全建设实战
kate zhu
网络安全R&SLinux网络安全
一、设计目标实现医疗业务网/卫生专网/互联网三网隔离满足等保2.0三级合规要求保障PACS影像系统低时延传输实现医疗物联网统一接入管控二、全网拓扑架构三、网络分区与安全设计IP/VLAN规划表核心业务配置(华为CE6865)interface100GE1/0/1descriptionPACS-CT-Modalitytrustdscp46#标记EF优先级qosqueueefbandwidth40%#
- 适用于呼叫中心质检的离线ASR模型
狂爱代码的码农
VOIP那些事容器
以下是适用于中文呼叫中心质检的离线语音转文字(STT)模型及工具,根据性能、中文支持、部署灵活性等维度整理:1.开源模型与框架1.1WeNet(出门问问&西北大学)特点:端到端语音识别框架,专为中文优化,支持流式和非流式识别,适合工业场景。优势:预训练模型基于AIShell等中文数据集,准确率高。低延迟,适合实时处理(如质检中的实时监控)。支持GPU/CPU部署,提供Python和C++接口。部署
- 解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
紫雾凌寒
AI炼金厂#机器学习算法机器学习算法分类朴素贝叶斯python深度学习人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、主成分分析(PCA)、神经网络。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这众多的算法中,朴素贝叶斯算法
- 解锁机器学习核心算法 | 线性回归:机器学习的基石
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习线性回归人工智能深度学习aipython
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 杰和推出面向人工智能应用的AI服务器
weixin_34211761
在这个数据爆炸的年代,我们获取数据的难度大大降低,但要获取数据的价值仅依靠简单的数据分析是不可行的。如果将大数据看作一个产业,那么数据深挖(挖掘)就是其中一项核心技术,数据深挖(挖掘)通常与计算机科学有关,如数据统计、数据检索、分析处理、机器学习等技术,而这些恰好是人工智能技术的优势。人工智能一直都是备受关注的热门领域,更是被认为是第四次工业革命。随着技术的不断开发及深入优化,人工智能以迅雷不及掩
- 机器学习数学通关指南——微积分基本概念
Shockang
机器学习数学通关指南机器学习微积分数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文函数一、函数的定义与本质映射关系:函数是实数集到实数集的映射(或更一般地,非空数集到数集的映射)。规范形式:f:D→Rf:D\to\mathbb{R}f:D→R,其中D⊆RD\subseteq\mathbb{R}D⊆R为定义域
- SVM(支持向量机)原理及数学推导全过程详解
子木呀
支持向量机人工智能分类算法SVM
由于格式问题,为方便阅读,请点击下方链接访问原文点击此处访问原文点击此处访问原文点击此处访问原文点击此处访问原文关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前辈们的文章对SVM进行了一个整理,把看的过程中产生的一些问题也进行了解答。本来想着总结得简洁明了又易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 智能边缘计算:开启智能新时代
livefan
人工智能
什么是智能边缘计算?在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算可以减少数据传输的延迟,提高响应速度,增强数据处理的实时性和效率。而智能边缘计算,是边缘计算架构在涉及数据分析、机器学习或人工智能的工作负载中的应用。一般来说,边缘架构是一种将数据或应用程序放置在网络边缘的
- 多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221
level2Tick
A股level2历史数据金融数据库
多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221采用Level2逐笔成交与逐笔委托的详细记录,这种毫秒级别的数据能揭露众多关键信息,如庄家意图、虚假交易,使所有交易行为透明化。这对交易大师分析主力习性大有裨益,对人工智能进行机器学习也非常合适,数据量大且精确。以下是今日根据Level2逐笔成交与委托数据观察到的部分股票现象:level2逐笔成交逐笔委托数据下载链接:https:
- 【AI】详解从数学到物理再到工程应用,人类研究新理论 新方法的研究范式 (deepseek chatgpt Gemini等)...
十年一梦实验室
人工智能chatgpt
deepseek-R1Chatgpto3-miniGemini2.0FlashThinkingExperimentalClaudeMicrosoftCopilot-ThinkDeeperGrok3-Deepsearchdeepseek-R1人类探索新理论与方法的研究范式遵循着从抽象数学到物理建模,最终实现工程应用的递进路径。这一过程体现了基础科学与应用技术的深度协同,形成了知识创新的完整链条。以下
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 物联网数据采集平台【物联网毕业论文】
算法与数据
物联网
物联网技术与数据分析|物联网系统设计|模型构建✨专业领域:物联网系统架构设计智能设备与传感器网络数据采集与处理物联网大数据分析智能家居与工业物联网边缘计算与云计算物联网安全与隐私保护擅长工具:Python/R/Matlab数据分析与建模物联网平台与设备编程数据流与实时监控系统设计机器学习与预测模型应用物联网协议(MQTT,CoAP,HTTP)物联网数据可视化工具✅物联网专业题目与数据:物联网毕业论
- GPU与FPGA加速:硬件赋能AI应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
GPU与FPGA加速:硬件赋能AI应用1.背景介绍1.1人工智能的兴起人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。1.2硬件加速的必要性为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形
- (14)FPGA与GPU区别
宁静致远dream
FPGA入门与提升(培训课程)fpga开发
(14)FPGA与GPU区别1文章目录1)文章目录2)FPGA入门与提升课程介绍3)FPGA简介4)FPGA与GPU区别5)技术交流6)参考资料2FPGA入门与提升课程介绍1)FPGA入门与提升文章目的是为了让想学FPGA的小伙伴快速入门以及能力提升;2)FPGA基础知识;3)VerilogHDL基本语法;4)FPGA入门实例;5)FPGA设计输入,包括代码输入、原语输入;6)FPGA设计技巧;7
- GPU和FPGA的区别
Florence23
fpga开发
GPU(GraphicsProcessingUnit,图形处理器)和FPGA(Field-ProgrammableGateArray,现场可编程门阵列)不是同一种硬件。我的理解是,虽然都可以用于并行计算,但是GPU是纯计算的硬件,FPGA是控制+计算的可编程的硬件。FPGA有点像CPU,区别在于,CPU的硬件是固定的,而FPGA的硬件是可编程的。FPGA:由大量的可编程逻辑块(CLB)、查找表(L
- AI赋能Spring Boot:打造智能应用的秘诀
墨瑾轩
一起学学Java【一】人工智能springboot后端
关注墨瑾轩,带你探索Java的奥秘超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣引言各位技术探险家们,欢迎来到今天的冒险——我们将一起探索如何将SpringBoot与AI服务集成,利用OpenAI和TensorFlow提升应用的智能。想象一下,你的应用程序不再是一个简单的代码集合,而是一个拥有智慧的伙伴,能够理解和预测用户的需求。这就是
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- 地平线 3D 目标检测 bev_sparse 参考算法 - V2.0
算法自动驾驶
该示例为参考算法,仅作为在征程6上模型部署的设计参考,非量产算法简介在自动驾驶视觉感知系统中,为了获得环绕车辆范围的感知结果,通常需要融合多摄像头的感知结果。目前更加主流的感知架构则是选择在特征层面进行多摄像头融合。其中比较有代表性的路线就是这两年很火的BEV方法,继TeslaOpenAIDay公布其BEV感知算法之后,相关研究层出不穷,感知效果取得了显著提升,BEV也几乎成为了多传感器特征融合的
- AI人工智能带给企业什么影响
雪叶雨林
AI人工智能ai
在科技日新月异的今天,人工智能(AI)正以前所未有的速度和广度渗透到各行各业,对企业运营产生了深远的影响。这种影响不仅体现在技术层面的革新,更在于企业组织结构、工作流程、决策模式等多个维度的深刻变革。一、优化决策过程,提升精准度人工智能通过大数据分析和机器学习技术,能够处理和分析海量信息,为企业提供更为精准、实时的决策支持。相较于传统的人工分析,AI能够识别出数据中的微妙模式和趋势,帮助企业预见市
- 编程小白冲Kaggle每日打卡(14)--kaggle学堂:<机器学习简介>你的第一个机器学习模型
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能
Kaggle官方课程链接:YourFirstMachineLearningModel本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。YourFirstMachineLearningModel建立你的第一个模型。好哇!选择建模数据你的数据集有太多的变量,你无法理解,甚至无法很好地打印出来。你如何将如此庞大的数据量缩减到你能理解的程度?我们将从使用直觉选择几个变量开始。后续课程将向您展示自动
- AI如何预测比赛结果:体育预测技术全解析
翱翔的猪脑花
人工智能
利用人工智能技术构建一个完整的体育预测系统,涵盖数据收集、模型构建到部署应用的完整流程。一、系统架构设计1.整体架构数据采集层数据处理层模型训练层预测服务层应用展示层2.技术选型Python3.8+TensorFlow/PyTorchScikit-learnPandas/NumpyFlask/FastAPI二、数据收集与处理1.数据源集成python复制importrequestsimportpa
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>