- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- 2-85 基于matlab的FrFT下时变幅度LFM信号参数估计
'Matlab学习与应用
matlab工程应用matlab人工智能算法一维插值峰值搜索方式二维峰值搜索算法下时变幅度LFM信号参数估计FrFT
基于matlab的FrFT下时变幅度LFM信号参数估计,输入高斯白噪声LFM信号(信噪比可定义),采用二维峰值搜索算法及一维插值峰值搜索方式提供计算速度,输出LFM信号参数估计结果。程序已调通,可直接运行。2-85一维插值峰值搜索方式-小红书(xiaohongshu.com)
- 实践-python简单实现参数估计
HenlyX
作业:https://mp.weixin.qq.com/s/8egc4QE6MmME0AS4FKSlOg下面动手实践主要是借鉴:https://blog.csdn.net/polarislove36/article/details/78922045?utm_source=blogxgwz4https://blog.csdn.net/maplepiece1999/article/details/10
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 统计学8——假设检验
零 度°
统计学概率论
目录结构框架内容精读1.假设检验形式2.一个总体参数的检验2.1总体均值的检验2.2总体比例检验2.3总体方差检验3.两个总体参数的检验3.1均值差检验3.2比例差检验3.3方差比检验4.假设检验的结果解读名词解释结构框架内容精读1.假设检验形式上一章参数估计研究的是用样本统计量估计总体参数的方法,其总体参数在研究前是未知的。本章假设检验则是对总体参数先做一个假设,然后利用样本信息去验证假设是否成
- 【MATLAB源码-第139期】基于matlab的OFDM信号识别与相关参数的估计,高阶累量/小波算法调制识别,循环谱估计,带宽估计,载波数目估计等等。
Matlab程序猿
MATLAB通信原理OFDMmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述在现代无线通信系统中,正交频分复用(OFDM)因其高效的频谱利用率、强大的抗多径衰落能力以及灵活的带宽分配等优势,成为了一种非常重要的调制技术。然而,随着无线通信网络的复杂性增加,对OFDM信号的识别与参数估计提出了更高的要求。这不仅是为了提高通信质量和效率,也是为了确保网络的兼容性和安全性。因此,研究OFDM调制识别和参数估计算法具有重要的理论意义和实
- 九月二十六日总结
疯狂太阳花
英语:2013年第三篇,我们的未来一片光明,第四篇,州政府的权利,联邦政府的权利,最高法院,三权分立,checkandbalance每日一句,信任的重要性时文精析数学:数理统计的初步,参数估计样本均值,样本方差,k阶原点矩,三个分布,卡方分布,t分布,F分布,正态总体点估计,矩估计法,最大似然估计结构力学:静定拱,三绞拱,拱轴线,拱趾,拱顶,跨度,拱高内力计算,合理拱轴线
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- vine copula学习 Day2
补补补牢
前言:大概理解了vine-copula的抽样过程(详见上一篇分享),但是文中直接假定了paircopula的参数进行了抽样,但是现实情况中,我们往往需要用已有数据进行参数的估计,进而再进行抽样的,抽样的这个过程可以用R实现。因此,今天首先对几种估计方法进行阐述,再用R实现不同方法下的参数估计。今天的和Vinecopula没什么关系。学习用书:copulamethodinfinance&copula
- Kmeans、混合高斯模型、EM 算法
dreampai
混合高斯模型(MixturesofGaussians)和EM算法image.pngKmeans与EM算法E步是确定隐含类别变量CM步更新其他参数u(质心)来时J(平方误差)最小化隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估
- DAY 150: 故事
懒兔少女
Part2故事设计原理Chapter7故事材质1.主人公主人公是一个具有意志力的人物。主人公必须具有自觉的欲望。主人公还可以有一个自相矛盾的不自觉欲望。主人公有能力令人信服地追求其欲望对象。主人公必须至少有一次机会达成欲望。主人公有意志和能力追求其自觉和/或不自觉的欲望,一直到线索的终点,一直到背景和类型所确立的人类极限。故事必须构建出一个最后动作,让观众无从想象出另一个更好的可能。因为主人公的生
- 《峡谷相遇的爱情》
离汐lyf
Chapter7接着甜游戏结束,顾吟他们这边险胜,毫无疑问的伍岸是MVP,重新回到组队,伍岸又问她,“明天打算去哪?”“去教室自习吧,外面也没有什么好玩的,而且我作业还没有写完。嗯,你不开了吗?”“开,”伍岸点了开始匹配,“那我明天来找你,你几点出来?”按完确定后,顾吟在脑子里过了遍时间,七点半应该是能够起来的,伍岸在校外,过来的话,“八点半吧。”伍岸拿了个吕布,然后回答她,“行,拿貂蝉,明天我在
- r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化|附代码数据
数据挖掘深度学习机器学习算法
原文链接:http://tecdat.cn/?p=23825最近我们被客户要求撰写关于有限正态混合模型EM算法的研究报告,包括一些图形和统计输出。简介本文介绍了基于有限正态混合模型在r软件中的实现,用于基于模型的聚类、分类和密度估计。提供了通过EM算法对具有各种协方差结构的正态混合模型进行参数估计的函数,以及根据这些模型进行模拟的函数。此外,还包括将基于模型的分层聚类、混合分布估计的EM和贝叶斯信
- 机器学习---学习与推断,近似推断、话题模型
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.学习与推断基于概率图模型定义的分布,能对目标变量的边际分布(marginaldistribution)或某些可观测变量为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问题,通常使用极大似然估计或后验概率估计求解。单若将参数视为待推测的变量,则参数估计过程和推断十分相似,可以“吸收”到推断问题中。假设图模型所对应的变量集x={x1,x2,···,xn}能分为XE
- 22《赤条条说瑞士人》,在瑞士做妈妈要为孩子付出什么?
林央之
《赤条条说瑞士人》TheNakedSwiss作者|ClareO’dea译者|影子(一个国家,10个传闻。一探究竟。是真是假?任君评述。)Chapter1:认识一下瑞士人Chapter2:瑞士人很有钱,吗?Chapter3:瑞士人排外,吗?Chapter4:瑞士人聪明,吗?Chapter5:瑞士人性别歧视,吗?Chapter6:瑞士人中立,吗?Chapter7:瑞士人帮过纳粹,吗?Chapter8:
- 用C#实现最小二乘法(用OxyPlot绘图)
mingupup
C#c#最小二乘法开发语言
最小二乘法介绍✨最小二乘法(LeastSquaresMethod)是一种常见的数学优化技术,广泛应用于数据拟合、回归分析和参数估计等领域。其目标是通过最小化残差平方和来找到一组参数,使得模型预测值与观测值之间的差异最小化。最小二乘法的原理✨线性回归模型将因变量(y)与至少一个自变量(x)之间的关系建立为:在OLS方法中,我们必须选择一个b1和b0的值,以便将y的实际值和拟合值之间的差值的平方和最小
- 刹车距离问题matlab参数估计
日光倾
一个模型拟合实例中车辆刹车距离案例中的最小二乘法参数估计内容及其源代码一、原始数据二、我的计算结果三、视频计算结果四、思考发现实际计算结果和视频中的计算结果不同,即出现了较大的误差。五、最小二乘准则拟合多项式的相关知识在matlab里使用ployfit函数进行拟合
- 十分钟学习极大自然似估计
培根炒蛋
EndlessLethe原创文章,转载请注明:转载自小楼吹彻玉笙寒原文链接地址:十分钟学习极大似然估计前言参数估计是机器学习里面的一个重要主题,而极大似然估计是最传统、使用最广泛的估计方法之一。本文主要介绍了极大似然估计,简单说明了其和矩估计、贝叶斯估计的异同,其他估计(如MAP)并不涉及。为什么要用极大似然估计对于一系列观察数据,我们常常可以找到一个具体分布来描述,但不清楚分布的参数。这时候我们
- 区间估计——置信区间
Foina数据分析狮
你可能需要参考这篇文章抽样与抽样分布——中心极限分布、点估计1.区间估计1.1区间估计总体参数估计的一个区间,确信该区间将参数值纳入其中。区间估计的形式:点估计±边际误差1.2置信区间区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间。区间的最小值是置信下限,区间的最大值是置信上限。1.3置信水平/置信度/置信系数假定抽取100个样本,构造100个置信区间,这100个置信区间中有9
- 人工智能之参数估计
WEL测试
WEL测试人工智能人工智能参数估计
参数估计参数估计:假设总体X~N(μ,σ2\sigma^2σ2),μ和σ2\sigma^2σ2是未知参数,X1,X2,⋅⋅⋅,XnX_1,X_2,\cdot\cdot\cdot,X_nX1,X2,⋅⋅⋅,Xn是来自X的样本,样本值是x1,x2,⋅⋅⋅,xnx_1,x_2,\cdot\cdot\cdot,x_nx1,x2,⋅⋅⋅,xn,要由样本值来确定μ和σ2\sigma^2σ2的估计值,这就是参数
- 机器学习算法之EM算法
浅白Coder
机器学习算法机器学习人工智能
一、EM算法EM算法最初是为了解决缺失数据情况下参数估计问题;根据已经给出的观察数据,估计出模型参数的值,然后根据得到的模型参数去估计缺失的数据,再由模型的观察数据和估计的确实数据去预测模型参数值,反复迭代,直至最后收敛。1.1预备知识:1.1.1.极大似然估计:根据已观察到的数据去最大化该数据出现概率,得到的参数即为所求。(已观察到的数据理应出现的概率比较大,比较合理)1.1.2.Jensen不
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 【高质量精品】2024美赛A题22页word版成品论文+数据+多版本前三问代码及代码讲解+前四问思路模型等(后续会更新)
小笼包数模
数学建模机器学习算法
一定要点击文末的卡片,进入后,即可获取完整资料+后续参考论文!!整体分析:这个题目是一个典型的生态系统建模问题,涉及到动物种群的性比例变化、资源可用性、环境因素、生态系统相互作用等多个方面。这个题目的难点在于如何建立一个合理的数学模型,能够描述海兰蒂的性比例变化的机制和规律,以及其对生态系统的影响。这个题目的重点在于如何利用已有的数据和文献,进行参数估计、模型验证、灵敏度分析、模拟实验等,以回答题
- 自然语言处理——5.2 语言模型(参数估计)
SpareNoEfforts
两个重要概念:训练语料(trainingdata):用于建立模型,确定模型参数的已知语料。最大似然估计(maximumlikelihoodEvaluation,MLE):用相对频率计算概率的方法。最大似然估计求法对于n-gram,参数可由最大似然估计求得:其中,是历史串在给定语料中出现的次数,即,不管是什么。是在给定的条件下出现的相对频度,分子为与同出现的次数。举例例如,给定训练语料:“Johnr
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 推断统计分析-参数估计
70fa0b237415
image.png什么是推断统计推断统计是研究如何根据样本数据去推断总体数量特征的方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。为什么要做推断统计因为在实际研究中,获取总体数据通常比较困难,甚至不可能完成。因此,就需要对总体进行抽样,通过样本的统计量去估计总体参数。也就是说,总体的参数往往是未知的,我们为了获取总体的参数,需要通过样本的统计量来估计总体参
- 学习:StatQuest-二项分布,正态分布极大似然
小潤澤
二项分布极大似然这个概念既是对二项分布在极大似然的条件下的参数估计,求每个数据点似然值的乘积。我们还是用之前的例子,我们调查7个人,假设每个人喜欢两种口味芬达的概率各为0.5,恰好有4人喜欢橘子味的芬达,3个人喜欢葡萄味的芬达的概率:image.png那么我们换个话题,我想求调查7个人,有4个人选择橘子味的芬达,每个人选择橘子味芬达的概率p=0.5的似然值image.png右边式子不变(里面参数值
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第4章朴素贝叶斯法4.1朴素贝叶斯法的学习与分类4.1.1基本方法4.1.2后验概率最大化的含义4.2朴素贝叶斯法的参数估计4.2.1极大似然估计4.2.2学习与算法4.2.3贝叶斯估计代码实践GaussianNB高斯朴素贝叶斯scikit-learn实例scikit-learn:伯努利模型和多项式模型《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习
- 《SPSS统计学基础与实证研究应用精解》视频讲解:参数估计
数据科学作家
SPSSSPSS学习SPSS入门数据分析统计分析统计学参数估计
《SPSS统计学基础与实证研究应用精解》2.5视频讲解视频为《SPSS统计学基础与实证研究应用精解》张甜杨维忠著清华大学出版社一书的随书赠送视频讲解2.5节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。本书旨在手把手教会使用SPSS撰写实证研究类论文或开展数据分析。常用统计学原理、实证研究的套路、调查问卷设计、信度分析、效度分析、T检验、ANOVA分析、相关性分析、回归分析
- RANSAC算法(仅供学习使用)
RPCR
算法汇总算法机器学习人工智能
1.定义RANSAC(RandomSampleConsensus)算法是一种基于随机采样的迭代算法,用于估计一个数学模型参数。它最初由Fischler和Bolles于1981年提出,主要用于计算机视觉和计算机图形学中的模型拟合和参数估计问题。RANSAC算法的基本思想是通过随机采样一小部分数据来估计模型参数,然后用这个模型对所有数据进行测试,将满足模型的数据点作为内点,不满足模型的数据点作为外点。
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一