- 参数估计:从样本窥见总体
Algo-hx
概率论与数理统计概率论机器学习人工智能
目录引言7参数估计7.1参数估计的基本概念7.1.1估计问题类型7.1.2估计量评价标准7.2点估计方法7.2.1矩估计法(MME)7.2.2最大似然估计(MLE)7.3区间估计原理7.3.1置信区间定义7.3.2枢轴量法(关键步骤)7.4单正态总体参数区间估计7.4.1均值μ\muμ的置信区间7.4.2方差σ2\sigma^2σ2的置信区间7.5双正态总体参数区间估计7.5.1均值差μ1−μ2\
- 期望最大化算法
只微
杂算法机器学习概率论
期望最大化算法问题场景算法思路期望最大化算法(ExpectationMaximization,EM)是一种基于不完整、包含隐变量观测数据进行统计模型参数估计的方法。我们知道,统计模型中的参数都需要根据观测数据集(训练数据)来进行估计。但是,在有些场景下,观测数据集中包含的信息不完整,有缺失,此时就不太容易去估计相应的参数。EM算法就是针对这种问题的的方法。问题场景桌子上放着一个盒子,其中有两种类型
- P值、置信度与置信区间的关系:统计推断的三大支柱
进一步有进一步的欢喜
p值置信度置信区间统计学显著性水平
目录引言一、P值是什么?——假设检验的“证据强度”1.1定义1.2判断标准:显著性水平α\alphaα(阿尔法)1.3示例说明二、置信区间与置信度:参数估计的“不确定性范围”2.1置信区间的定义2.2置信度的含义三、显著性水平α\alphaα与置信度1−α1-\alpha1−α的互补关系3.1数学上的互补关系3.2实际意义四、P值vs置信区间:本质不同但逻辑相通五、P值与置信区间的数学联系5.1举
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 编程问题解决与Visual Basic 2010入门指南
兰森环游世界
问题解决过程算法设计用户界面VisualBasic2010编程基础
编程问题解决与VisualBasic2010入门指南背景简介随着技术的飞速发展,编程已经成为了一个必备技能。为了掌握编程,理解问题解决的流程至关重要。本篇博客基于《Chapter7》和《Chapter3》的内容,深入探讨了编程问题解决过程中规划算法的重要性,并展示了如何使用VisualBasic2010创建Windows应用程序。第一步:分析问题在编程的世界里,解决一个问题通常意味着要先对问题进行
- 中级统计师-统计学基础知识-第三章 参数估计
孟意昶
考证之旅概率论机器学习人工智能
统计学基础知识第三章参数估计第一节统计量与抽样分布1.1总体参数与统计量总体参数:描述总体特征的未知量(如均值μ\muμ、方差σ2\sigma^2σ2、比例π\piπ)。统计量:由样本数据计算的量(如样本均值xˉ\bar{x}xˉ、样本方差s2s^2s2、样本比例ppp),是随机变量。1.2点估计的评价标准标准定义数学表达无偏性估计量的期望等于总体参数E(θ^)=θE(\hat{\theta})=
- 贝叶斯估计方法
phoenix@Capricornus
模式识别中的数学问题学习机器学习
贝叶斯估计是一种基于贝叶斯统计框架的参数估计方法,它利用先验知识和观测数据来推断参数的后验分布,并从中得出参数的估计值。贝叶斯估计的核心思想是将参数视为随机变量,而不是固定但未知的常数,从而能够更好地处理不确定性。贝叶斯估计的基本步骤定义先验分布:先验分布p(θ)p(\theta)p(θ)表示在观测数据之前,对参数θ\thetaθ的先验知识或信念。先验分布可以是基于专家意见、历史数据或其他相关信息
- 数据挖掘技术与应用实验报告(三) —— 应用非线性模型进行客运量预测的实例
小李独爱秋
数据挖掘技术与应用数据挖掘可视化非线性预测模型python
一、实验目的掌握非线性回归模型的基本原理及其在客运量预测中的应用方法,理解非线性模型相较于线性模型的优势与适用场景。通过某省1987—2006年客运量相关数据,分析公路客运量与社会总客运量的变化趋势,探究时间序列中隐含的非线性关系。培养数据建模能力,包括数据预处理、模型参数估计、模型检验及预测分析,为交通规划提供理论支持。二、实验内容根据某省交通统计汇编材料得到下表中所列数据,包括某省1987-2
- 3.5 统计初步
x峰峰
#数学概率论考研
本章系统阐述统计推断理论基础,涵盖大数定律、抽样分布、参数估计与假设检验等核心内容。以下从六个核心考点系统梳理知识体系:考点一:大数定律与中心极限定理1.大数定律切比雪夫不等式:设随机变量XXX的数学期望E(X)=μE(X)=\muE(X)=μ,方差D(X)=σ2D(X)=\sigma^2D(X)=σ2,则对任意ε>0\varepsilon>0ε>0:P{∣X−μ∣≥ε}≤σ2ε2P\{|X-\m
- 2025年“深圳杯”数学建模挑战赛A题国奖大佬思路助攻
令狐烛数据分析
数模助攻数学建模
完整版万字论文思路和Python代码下载:https://www.jdmm.cc/file/2712072/问题2:QFN封装参数估计题目描述:QFN(QuadFlatNo-leads)封装可以分为三层:第一层:仅有环氧树脂。第二层:包含环氧树脂和芯片。第三层:包含环氧树脂和铜焊盘。需要建立数学模型,估计QFN封装在角点位置沿对角线方向的等效杨氏模量(E_{eq})和等效热膨胀系数(\text{C
- 最小距离估计器解读
DuHz
概率论机器学习算法人工智能线性代数信息与通信
最小距离估计器解读引言在统计学和计量经济学中,估计未知参数是一项核心任务。最小距离估计(MinimumDistanceEstimation,MDE)是一类强大的参数估计方法,它通过最小化观测数据与理论模型之间的某种"距离"来估计模型参数。基本概念最小距离估计的核心思想非常直观:我们寻找使得理论分布与实际观测数据之间"距离"最小的参数值。这里的"距离"是一个广义概念,可以是各种统计距离度量。假设我们
- 正态分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
正态分布习题集·题目篇全面覆盖单变量正态、多变量正态、参数估计、假设检验、变换以及应用,共20题,从基础到进阶。完成后请移步《答案与解析篇》。1.基础定义与性质(5题)1.1密度函数写出正态分布N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2)的概率密度函数(PDF),解释参数含义。1.2标准正态变换给定X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2),写出将X
- 二项分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
二项分布习题集·题目篇共18题,覆盖二项分布的定义、性质、参数估计、区间估计、假设检验、极限近似以及工程应用与编程仿真。完成后请移步《答案与解析篇》。1.基础概念(4题)1.1定义写出二项分布Bin(n,p)\mathrm{Bin}(n,p)Bin(n,p)的概率质量函数(PMF),说明n,pn,pn,p的含义。1.2伯努利关系用一句话说明二项分布与伯努利分布的关系,并给出数学表达式。1.3期望方
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- 深入解析R语言的贝叶斯网络模型:构建、优化与预测;INLA下的贝叶斯回归;现代贝叶斯统计学方法;R语言混合效应(多水平/层次/嵌套)
小艳加油
R语言应用R语言贝叶斯INLA回归分析统计方法
目录①基于R语言的贝叶斯网络模型的实践应用②R语言贝叶斯方法在生态环境领域中的应用③基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析④基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算)⑤R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现更多应用贝叶斯网络是一种结合图论与统计学理论提出的新型模型。贝叶斯网络不但能够统合已有
- 统计学-什么是置信度 ?
阿桨
数据分析知识问答数据分析
置信度,也称为置信水平,它反映了特定个体对特定命题真实性的相信程度。在统计学和概率论中,置信度是对某个样本统计量所构造的总体参数估计区间的可信程度或把握程度的度量。简而言之,它表示的是我们有多大信心认为某个估计或预测是准确的。具体来说,在研究和评估中,置信度是衡量数据或结果的可靠性和可信度的一种指标,它反映了被评估对象的真实性或有效性。例如,在机器学习和人工智能中,置信度是指算法对某个预测结果的置
- Open3D Ransac算法分割点云平面
MelaCandy
算法python计算机视觉图像处理3d
目录一、概述1.1算法原理1.2应用场景二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2分割后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、概述1.1算法原理RANSAC(RandomSampleConsensus)是一种迭代的参数估计算法,主要用于从包含大量噪声数据的样本中估计模型参数。其核心
- PCL RANSAC算法在平面拟合中的方向向量约束
心之飞跃
算法平面人工智能PCL
PCLRANSAC算法在平面拟合中的方向向量约束RANSAC(RandomSampleConsensus)是一种经典的参数估计算法,用于从包含噪声或异常值的数据集中估计模型参数。在点云处理领域,PCL(PointCloudLibrary)库提供了对点云数据进行各种操作和分析的工具。本文将介绍如何使用PCL库中的RANSAC算法实现平面拟合,并添加方向向量约束的功能。平面拟合是点云处理中常用的任务之
- VAE的学习及先验知识
butterfly won't love flowers
图像生成机器学习人工智能
笔记1、先验、后验、似然、证据2、极大似然估计3、最大后验估计4、贝叶斯均值估计5、KL散度6、VAE1、先验、后验、似然、证据对于给定的数据,我们假设其是服从某个数据分布的。θθθ决定了数据的分布,而数据是从这个分布中采样得到的。但是在统计学习中,我们通常不知道真实的参数θθθ,因此转向通过数据来推断它,也就是后面要说的参数估计。在此之前先讲些基础的术语。先验P(θθθ):先验就是在看到数据之前
- 2023-2024山东大学机器学习期末回忆
Walk Me Home
机器学习人工智能
1、考试时间:2024/6/122、考试形式:闭卷3、考试科目:机器学习基础(老师:XuXinShun)一、名词解释1、聚类2、集成学习3、回归4、维度灾难5、主动学习二、简答题1、非参数估计相比参数估计有什么优点。说出两种非参数估计的方法,并解释他们的基本思想。2、梯度下降法的过程,并解释为什么每一步目标函数的值每次都是降低3、解释什么是过拟合,并给出解决过拟合的几种方法4、简述决策树算法的过程
- 山东大学软件学院2023-2024二学期机器学习基础考试题回忆版
卑微小亮°
机器学习
一名词解释聚类集成学习回归维度灾难主动学习二简答题1非参数估计比着有参数估计的优点?阐述两个非参数估计的基本思想2阐述梯度下降的主要过程?证明为什么梯度下降每次目标函数值都会减小3什么是过拟合?有什么减少过拟合的方法?4阐述决策树的基本思想,说明ID3的实现过程三综合分析题1用w和b表示svm的初始式子2从最小化结构风险的角度阐述为什么要最大化margin3写出引入拉格朗日乘子后svm的对偶形式的
- pcl中ransac提取直线_PCL采样一致性算法(各种模型的分割)
weixin_40009099
pcl中ransac提取直线
在计算机视觉领域广泛的使用各种不同的采样一致性参数估计算法用于排除错误的样本,样本不同对应的应用不同,例如剔除错误的配准点对,分割出处在模型上的点集,PCL中以随机采样一致性算法(RANSAC)为核心,同时实现了五种类似与随机采样一致形算法的随机参数估计算法,例如随机采样一致性算法(RANSAC)最大似然一致性算法(MLESAC),最小中值方差一致性算法(LMEDS)等,所有估计参数算法都符合一致
- 机器学习(2)——逻辑回归
追逐☞
机器学习机器学习逻辑回归人工智能
文章目录1.什么是逻辑回归?2.核心思想3.逻辑回归模型的训练:4.参数估计(损失函数与优化)4.1.**损失函数:**4.2.极大似然估计(MLE)4.3.优化方法5.决策边界6.模型评估指标7.假设与适用条件8.逻辑回归的优缺点:9.逻辑回归的常用应用:10.示例代码1.什么是逻辑回归?逻辑回归(LogisticRegression)是一种用于分类问题的统计方法,特别是用于二分类问题。尽管其名
- python数据分析--- ch12-13 python参数估计与假设检验
shlay
统计分析软件python数据分析参数估计假设检验
python数据分析---ch12-13python参数估计与假设检验1.Ch12--python参数估计1.1参数估计与置信区间的含义及函数版1.1.1参数估计与置信区间的含义1.1.2参数估计函数版1.1.3参数估计函数版1.2Python单正态总体均值区间估计1.2.1方差σ2\sigma^2σ2已知1.2.2方差σ2\sigma^2σ2未知1.3Python单正态总体方差区间估计1.4Py
- 参数估计学习笔记通俗易懂版(包括点估计和区间估计(区间估包括总体均值的置信区间(总体标准差未知、总体标准差已知)和总体方差的置信区间))
互联网上的猪
数据科学学习笔记概率论
目录1.参数估计的基本概念2.点估计2.2定义与特点2.3常见方法2.4点估计的应用3.区间估计3.1概念及意义3.2构造步骤3.3应用实例3.4区间估计题解4.贝叶斯估计中的区间估计5.总结1.参数估计的基本概念在统计推断中,我们往往希望利用从总体中抽取的有限样本来推断总体的特性,这一过程称为参数估计。总体参数(例如均值、方差、比例等)往往是未知的,通过样本数据,我们可以得到对这些参数的估计。参
- Chapter 7: Case Studies_《C++20Get the details》_notes
lianghu666
c/c++c++20笔记开发语言
Chapter7:CaseStudies7.1AFlavorofPythonKeyConcepts:CodeImplementation:Explanation:7.2VariationsofFuturesKeyConcepts:CodeImplementation:Explanation:7.3GeneratorModificationandGeneralizationKeyConcepts:C
- 重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵概率论线性代数windows微信机器学习
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、机器学习和优化中具有重要作用。以下是其计算和更新的关键步骤:一、Fisher矩阵的计算定义Fisher矩阵的元素表示对数似然函数关于参数的二阶导数的期望值的负数,即:Fi,j=−
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 【数学基础】第十三课:参数估计
x-jeff
机器学习必备的数学基础机器学习
1.参数估计参数估计是统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,可分为:点估计。区间估计。1.1.参数估计和假设检验参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数在估计前是未知的。而在假设检验中,则是先对总体参数值提出一个假设,然后利用样本信息去
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一