- 【MATLAB源码-第157期】基于matlab的海马优化算法(SHO)机器人栅格路径规划,输出做短路径图和适应度曲线。
Matlab程序猿小助手
通信原理算法matlab机器人开发语言信息与通信启发式算法
操作环境:MATLAB2022a1、算法描述海马优化器(SeaHorseOptimizer,SHO)是一种近年来提出的新型启发式算法,其设计灵感来源于海洋中海马的行为模式,特别是它们在寻找食物和伴侣时表现出的独特策略。海马因其独特的外形和行为而著称于世,它们的这些行为为解决复杂的优化问题提供了新的思路。启发式算法通常模拟自然界中生物的行为或自然现象来解决数学和工程中的优化问题,海马优化器正是这样一
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 基于强化学习的制造调度智能优化决策
松间沙路hba
智能调度强化学习制造智能排程车间调度APS强化学习
获取更多资讯,赶快关注上面的公众号吧!文章目录调度状态和动作设计调度状态的设计调度动作的设计基于RL的调度算法基于值函数的RL调度算法SARSAQ-learningDQN基于策略的RL调度算法基于RL的调度应用基于RL的单机调度基于RL的并行机调度基于RL的流水车间调度基于RL的作业车间调度基于RL的其他调度RL与元启发式算法在调度中的集成应用讨论问题领域算法领域应用领域参考文献生产调度作为制造系
- 遗传算法(Genetic Algorithm, GA)附代码案例
Cooku Black
机器学习python高级用法遗传算法启发式算法python
遗传算法(GeneticAlgorithm,GA)简介遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索算法,属于进化计算的一种。它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的,用于解决优化问题,是一种启发式算法。遗传算法的基本思想是通过模拟生物进化过程中的遗传和变异机制来优化问题的解。算法流程初始化:随机生成一组染色体(解的编码),构成初
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 遗传算法实现
qq_51497433
matlab开发语言算法
遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法,它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的。遗传算法在解决优化和搜索问题时非常有效,特别是在解空间大且复杂时。该算法使用了生物进化中的选择、交叉(杂交)和变异等概念。遗传算法通常包括以下步骤:初始化:随机生成一个初始种群。种群由一定数量的个体组成,每个个体代表一个解。评估:计
- 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
Matlab程序猿
通信系统MATLAB通信原理matlab信息与通信算法
操作环境:MATLAB2022a1、算法描述D2D蜂窝通信介绍D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以
- beamsearch的计算过程和代码实现
浅白Coder
自然语言处理自然语言处理深度学习人工智能神经网络
Beamsearch(束搜索)是一种用于生成序列的搜索算法,常用于序列生成任务,例如机器翻译、语音识别和文本生成。它是一种启发式算法,旨在在生成序列时平衡搜索空间的广度和深度。Beamsearch使用一个参数称为"beamwidth"(束宽度)来控制搜索的宽度,即在每个时间步骤选择保留的最有希望的候选项数量。在每个时间步骤,Beamsearch保留最有希望的K个候选项,其中K是束宽度。下面是Bea
- 矩形排料算法
monk比丘
笔记
这几天研究矩形排料(下料、排样)问题。通过对矩形的宽高聚类得到一个启发式算法,能实现很好的排样效果。
- 启发式算法
Sanchez·J
美赛启发式算法算法python数学建模
引入以一个著名的问题为例——旅行商问题(TSP)。假设有一个商人要拜访N个城市,每个城市只能拜访一次,最后回到原来出发的城市,求最短路径。这是一个NP-hard问题,即目前来看,要求出最优解只能枚举,复杂度为。n只要稍微大一点,就会无法在正常时间内求出来。现在我们退一步,要求在一定时间内求出来,但不要求最优的解,只要一个相对比较优秀的解就行,这就引出了启发式算法。启发式算法基于直观或经验构造的算法
- 2024年新提出的算法:(凤头豪猪优化器)冠豪猪优化算法Crested Porcupine Optimizer(附Matlab代码)
群智算法小狂人
智能优化算法元启发式算法算法matlab数学建模
本次介绍一种新的自然启发式元启发式算法——凤头豪猪优化器(CrestedPorcupineOptimizer,CPO)。该成果于2024年1月发表在中科院1区SCItop期刊Knowledge-BasedSystems(IF=8.8)上。1、简介受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制
- 优化算法改进的三个定性分析实验:收敛行为分析,种群多样性分析和探索开发分析
树洞优码
算法matlab启发式算法代码规范
蛇优化算法是2022年提出的一种新的元启发式算法,发表在一区期刊Knowledge-BasedSystems,该算法是一种模仿蛇特殊交配行为的新型智能优化算法。对于每条蛇(雄性/雌性),如果在食物数量足够,温度很低的条件下,就会努力得到最好的伴侣。本期以蛇优化器SnakeOptimizer(SO)为例,在23个基准测试函数上进行定性分析实验,这三个实验可以大大增加论文的说服力和提升文章质量,可以增
- Linux调度-反转楼梯最后期限调度算法
人间正道是沧桑a
(反转楼梯最后期限调度算法)TheRotatingStaircaseDeadlineScheduler简称RSDLCPU调度似乎是那些永远未完成的工作之一。开发人员可以在CPU调度器上工作一段时间,并使其工作得更好,但总有一些工作负载不能像用户希望的那样得到很好的服务。交互系统的用户尤其倾向于对调度器延迟敏感。作为回应,当前的调度器已经发展出一组精心设计的启发式算法,它们试图检测哪些进程是真正交互
- 2019-03-28派森学习第129天
每日派森
帮师妹装了一晚上tensorflow,按照自己的前天安装的流程总还会报错,在加上她的电脑特别慢,真无语了!今晚学习一会儿模拟退火算法吧,白天都搜索了,一直没有来的及学习。5种启发式算法:1首先要明白全局最小和全局极小值:2模拟退火算法的基本思想:在每一步都有一定概率接受比当前更差的结果,从而有助于跳出局部极小值,找到全局最小值。算法框图
- 2024年新提出的算法:一种新的基于数学的优化算法——牛顿-拉夫森优化算法|Newton-Raphson-based optimizer,NRBO
项目申报小狂人
智能优化算法元启发式算法MATLAB算法数学建模
1、简介开发了一种新的元启发式算法——Newton-Raphson-Based优化器(NRBO)。NRBO受到Newton-Raphson方法的启发,它使用两个规则:Newton-Raphson搜索规则(NRSR)和TrapAvoidance算子(TAO)以及几组矩阵来探索整个搜索过程,以进一步探索最佳结果。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- 启发式算法解决TSP、0/1背包和电路板问题
NK.MainJay
启发式算法算法
1.LasVegas题目设计一个LasVegas随机算法,求解电路板布线问题。将该算法与分支限界算法结合,观察求解效率。代码python代码如下:#-*-coding:utf-8-*-"""@Date:2024/1/4@Time:16:21@Author:MainJay@Desc:LasVegas算法解决电路问题"""importheapqimportrandommaps=[]nums=8fori
- 基于黄金正弦算法的函数寻优算法
心️升明月
最优化问题matlabmatlab黄金正弦算法
文章目录一、理论基础1、算法原理2、算法伪代码二、仿真实验与分析三、参考文献一、理论基础1、算法原理黄金正弦算法(Goldensinealgorithm,Gold-SA)是Tanyildizi等人于2017年提出的新型元启发式算法,该算法的设计灵感来源于数学中的正弦函数,该算法利用数学中的正弦函数进行计算迭代寻优,其优点是收敛速度快、鲁棒性好、易于实现、调节的参数和运算符少。Gold-SA根据正弦
- 炼钢-连铸生产动态调度模型(加启发式算法步骤)
Han-torch
启发式算法动态调度
最近阅读了一些文献来了解动态调度的问题,有几篇文章觉得总结整理的很到位。《炼钢-连铸生产调度模型及启发式算法》——刘光航《钢铁生产动态调度理论研究与工程应用综述》——常春光《炼钢-连铸混合优化调度方法及应用(博士学位论文)》——王秀英首先整理一下看过的文献资料,关于动态调度研究方法应该可以分为四类:(1)基于模型的方法1.精确模型:运筹学方法,包括线性规划、动态规划、排队论、网络与图论等2.近似模
- TSOA-TCN-SelfAttention基于凌日优化时间卷积网络融合多头自注意力机制的多特征回归预测程序,还未发表!
预测及优化
网络回归数据挖掘
适用平台:Matlab2023版及以上凌日优化算法(TransitSearchOptimizationAlgorithm,TSOA)是2022年8月提出的一种新颖的元启发式算法,当一颗行星经过其恒星前方时,会导致恒星的亮度微弱地下降,这被称为凌日现象。该算法基于著名的系外行星探索方法,即凌日搜索(TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化,如果观察到接收到的光量减少
- 新算法!!! TSOA-CNN-LSTM-Attention凌日优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序,数据由Excel导入,直接运行
预测及优化
算法cnnlstmmatlab网络回归
适用平台:Matlab2023版及以上凌日优化算法(TransitSearchOptimizationAlgorithm,TSOA)是2022年8月提出的一种新颖的元启发式算法,当一颗行星经过其恒星前方时,会导致恒星的亮度微弱地下降,这被称为凌日现象。该算法基于著名的系外行星探索方法,即凌日搜索(TransitSearch,TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化
- 【机器学习】半监督学习
十年一梦实验室
机器学习学习人工智能深度学习
一、问题假设要利用无标签样本进行训练,必须对样本的分布进行假设?二、启发式算法自训练和协同训练是两种常用的半监督学习的方法,它们的主要区别在于使用的模型的数量和类型。自训练:自训练是一种使用单个模型的半监督学习的方法,它的过程是先用有标签的数据训练一个初始的模型,然后用这个模型对无标签的数据进行预测,选择一些预测结果最有信心的数据作为新的有标签的数据,加入到原来的有标签的数据集中,再用这个扩充的数
- 粒子群算法PSO优化BP神经网络(PSO-BP)回归预测-Matlab代码实现
Matlab神经网络深度学习
神经网络回归matlab机器学习源代码管理性能优化
一、粒子群算法PSO(代码获取:评论区或者私信获取)粒子群优化算法(Particleswarmoptimization,PSO)是由Kennedy等人于1995年提出的一种经典的启发式算法。PSO受启发于对鸟群捕食行为的研究,是通过群体中的个体之间的协作和信息共享,使得群体位置在解空间中从无序到有序,群体成员通过学习自己和其他成员的经验,不断改变搜索模式,从而寻得最优解。PSO由于具有调整参数少、
- 前端性能优化-加载优化
渔老师
前端cssjavascripthtml
前端性能优化-加载优化1.资源加载优先级在浏览器发起网络请求时,并非每个字节都具有相同的优先级,所以,浏览器通常会对所要加载的内容进行推测,将相对重要的信息先呈现给用户。比如浏览器一般会先加载CSS,再去加载JavaScript脚本和图像文件。当然,浏览器的判断并不一定都是准确的,下面就来看看如何影响浏览器对资源加载的优先级。浏览器是基于自身的启发式算法,会对资源的重要性进行判断,来划分优先级,通
- UAV | 多算法在多场景下的无人机路径规划(Matlab)
KAU的云实验台
智能优化算法MATLAB无人机路径规划UAV算法无人机matlab
近年来,无人机(unmannedaerialvehicle,UAV)由于其灵活度高、机动性强、安全风险系数小、成本低等特点,被广泛应用于搜索巡逻、侦察监视、抢险救灾、物流配送、电力巡检、农业灌溉等军用或民用任务。路径规划是无人机执行任务的关键,也是自主无人机在工程应用上的主要挑战。现有的无人机路径规划算法主要分为经典算法和元启发式算法,经典算法包括:A*算法、快速搜索随机数RRT等,但这些算法在面
- 双语!性能优越|融合黏菌和差分变异的量子哈里斯鹰算法SDMQHHO
KAU的云实验台
哈里斯鹰优化算法MATLABpython算法pythonmatlab
前面的文章里卡卡介绍了哈里斯鹰优化算法(HarrisHawksOptimization,HHO).HHO是Heidari等[1]于2019年提出的一种新型元启发式算法,设计灵感来源于哈里斯鹰在捕食猎物过程中的合作行为以及突然袭击的狩猎风格,具有需调参数少、原理简单易实现、局部搜索能力强等优点,在许多工程领域得到广泛的应用。然而,HHO算法虽然在CEC2005中有较好的性能,但HHO在CEC2017
- SVM线性支持向量机(二)(python实现)
你的梦想是?
机器学习支持向量机算法机器学习
3.求解根据带约束条件的目标函数最佳参数α\alphaα在硬间隔的线性可分支持向量机和软间隔的支持向量机中我们通过拉格朗日函数,对偶问题将带约束条件的求解多个最优参数的目标函数转化求解一个最优参数的目标函数。式1.26和式2.8,当时没有解释如何求最优参数α\alphaα,这里使用SMO序列最小优化算法求解最佳参数α\alphaα,SMO算法是一种启发式算法,他与坐标下降法类似。3.1坐标下降法坐
- 2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码
今天吃饺子
matlab开发语言
双曲正弦余弦优化器(SinhCoshOptimizer,SCHO)是一种新型元启发式算法,该算法基于双曲正弦和双曲余弦特性的数学启发,具有进化能力强、搜索速度快、寻优能力强的特点。该成果于2023年10月发表在SCI一区,Top顶刊Knowledge-BasedSystems上。SCHO的灵感来源有三点。首先,如何在勘探和开发之间取得平衡是一个巨大的挑战,其次,面对复杂多样的问题,仍需要提出新的元
- 基于多元宇宙MVO算法的多目标优化(Matlab代码)
ByteWhisper
算法matlab数据结构Matlab
基于多元宇宙MVO算法的多目标优化(Matlab代码)多目标优化是在现实世界中广泛应用的一个重要问题。解决多目标优化问题的一个有效方法是使用元启发式算法,其中多元宇宙优化(Multi-VerseOptimization,MVO)算法是一种基于宇宙和多元宇宙的元启发式算法。本文将介绍如何使用Matlab实现基于多元宇宙MVO算法的多目标优化。首先,我们需要定义多目标优化问题。在本文中,我们将考虑一个
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,