- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 图像处理 -- 图像清晰度测量方法
sz66cm
图像处理计算机视觉
图像清晰度测量方法拉普拉斯算子(LaplacianOperator)拉普拉斯算子是一种二阶导数算子,用于检测图像的边缘。清晰的图像通常具有更多且更明显的边缘。边缘检测(EdgeDetection)常用的边缘检测算法包括Sobel、Prewitt和Canny边缘检测器。通过计算边缘的数量和强度,可以间接判断图像的清晰度。方差(Variance)方差用于衡量图像灰度值的分布情况。图像中灰度值的方差越大
- python绘制二维正态分布概率密度图(2d,3d)
马鹿91
pythonnumpy
importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportmultivariate_normal#定义均值和协方差矩阵mean=np.array([0,0])covariance=np.array([[1,0.5],[0.5,1]])#创建一个网格x,y=np.meshgrid(np.linspace(-3,3,500),np.
- VIT论文阅读: A Image is Worth 16x16 Words
Undefined游侠
论文阅读
简介在2024年,大家都知道了transformer的故事,但是在4年前,CNN和Transformer谁才是CV的未来,还没有那么确定。在简介部分,作者提到了一个令人失望的事实,在基于imagenet的实验中发现,transformer的表现差于同尺寸的ResNet。作者把原因归结到biastranslationequivarianceandlocality,这些CNN具有,但是transfor
- 评估与改进机器学习模型
stoAir
吴恩达深度学习笔记机器学习人工智能神经网络深度学习
Mlstrategy文章目录MlstrategySingleNumbleEvaluationMetricoptimizingandsatisficingmetricImprovingmodelperformanceTwofundamentalReducebiasandvarianceAvoidablebiasvarianceerroranalysiswaysIncorrectlylabledexa
- 文献解读:纵向数据的测量不变性和交叉滞后模型(一)
Codewar
今天本来想看看交叉滞后怎么做,然后给粉丝写写教程,查资料的过程中发现了一篇很好的文献,记录下来分享给大家。这篇文献主要是讲如何用R的lavaan包做交叉滞后模型的。文献一开始首先介绍MeasurementinvarianceMeasurementinvariance测量不变性在心理学的很多情形下,我们都不能直接测量我们想要的构象,比如饮酒动机,这些不能直接测量的变量叫做潜变量,叫做因子,叫做构象,
- pearson correlation coefficient
dingtom
要理解Pearson相关系数,首先要理解协方差(Covariance),协方差是一个反映两个随机变量相关程度的指标,如果一个变量跟随着另一个变量同时变大或者变小,那么这两个变量的协方差就是正值,反之相反,公式如下:Pearson相关系数公式如下:由公式可知,Pearson相关系数是用协方差除以两个变量的标准差得到的,虽然协方差能反映两个随机变量的相关程度(协方差大于0的时候表示两者正相关,小于0的
- Contravariance 概念在计算机编程中的应用
编辑器计算机
Contravariance是一种编程概念,常见于面向对象编程语言中,特别是在类型系统中。它涉及到类型的关系和继承。在理解Contravariance之前,我们先来了解一下Covariance和Invariance这两个概念,它们通常与Contravariance一起讨论。Covariance:当一个类的子类型(或者接口的子类型)在方法中替代父类型时,方法的返回类型会随之变化。换句话说,返回类型是
- 14.2 OpenGL图元装配和光栅化:不变性
乘风之羽
OpenGL图形渲染
不变性Invariance一个几何体或图元(primitive)如三角形、线段等,在窗口坐标系下通过平移(x,y)偏移量得到的新图元p₀,如果原始图元p和变换后的图元p₀都没有被裁剪(clipping),那么由p₀生成的每一个片段f₀与原图元p生成的对应片段f除了中心点位置不同之外,在其它所有方面都应该是相同的。这种不变性是基于图形变换的基本性质,即平移不改变形状和大小,只改变位置。因此,即使是在
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- Regularization&feature selection
zealscott
Crossvalidation/multualinformation/Bayesianstatisticsandregularization在之前我们讨论了最小化风险函数,但很多时候这样做的效果并不好,这是由于biasandvariance的权衡。因此,我们需要进行模型选择,来自动的选择最合适的模型。Crossvalidation假设我们有一些有限的模型,如何来选择哪个模型能够使得其泛化能力最好?
- 使用 postcss-cva 来生成 cva 方法吧
使用postcss-cva来生成cva方法吧使用postcss-cva来生成cva方法吧什么是cva封装示例组成参数postcss-cva的功能Css示例原子化设计注释参考生成cva函数Refers什么是cvacva全称为class-variance-authority,它是一个非常适合制作那种,创建控制Css变体方法的类库,它非常的契合像tailwindcss这类的原子化思想。在很多时候我们自己
- 图像的重要属性
superdont
计算机视觉计算机视觉深度学习人工智能
图像还具有以下重要属性:旋转不变性(rotationinvariance):图像在发生旋转后,其重要特征和对象仍然能够被识别。尺度不变性(ScaleInvariance):图像在缩放或尺度变化后,其重要特征和对象仍然能够被识别。例如,在图像放大或缩小后,物体的关键点或边缘仍然清晰可见。仿射不变性(AffineInvariance):图像在经历仿射变换(如平移、旋转、缩放、剪切等)后,其结构特征保持
- 方差与偏差
井底蛙蛙呱呱呱
"偏差方差分解"(bias-variancedecomposition)是解释学习算法泛化性能的一种重要工具.偏差方差分解试图对学习算法的期望泛化错误率进行拆解.我们知道,算法在不同训练集上学得的结果很可能不同,即便这些训练集是来自同一个分布.对测试样本队令yD为m在数据集中的标记,y为x的真实标记(注:理论上y=yD,当有噪声时,会出现y!=yD,即错误的标注),f(x;D)为训练集D上学得模型
- python方差分析
彭博锐
python开发语言学习笔记
方差分析方差分析(AnalysisofVariance,简称ANOVA)是一种统计方法,用于比较两个或更多组之间的平均值是否存在显著差异。它可以帮助确定不同组之间的变异程度是否超过了在组内观察到的变异程度。方差分析通常用于实验设计和研究中,以确定不同处理或条件对变量的影响是否显著。方差分析的基本思想是将总体变异分解为两部分:组间变异和组内变异。组间变异是指不同组之间的差异,而组内变异是指同一组内观
- 【点云、图像】学习中 常见的数学知识及其中的关系与python实战[更新中]
荒野火狐
点云学习python开发语言点云机器学习深度学习
文章目录前言一、平均值、方差、协方差平均值(mean)np.mean()方差(variance)np.var()总体方差np.var(a,ddof=0)无偏样本方差np.var(a,ddof=1)有偏样本方差标准差(standarddeviation)np.std(a,ddof=1)默认是有偏估计,所以务必加上ddof=1,以下均使用无偏估计(ddof=1)协方差(covariance)np.co
- 统计学 (番外 )
呼吸化为空气
1.研究方法入门总体均值μ样本均值x-bar抽样误差(samplingerror):μ-(x-bar)单盲双盲随机样本比便利样本更能够得出总体结论2.数据可视化频数频率直方图(hist)柱状图(bar)偏斜分布正态分布均匀分布多峰分布3.集中趋势modemedianmean4.差异性IQRoutliersvariancesigma贝塞尔校正正态分布
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- 阵列信号处理基础
musiclvme
数字信号处理数字信号处理矩阵
前言阵列信号处理利用多个麦克风的的空间信息对接受信号做空域滤波和信号合成,是除时域和频域外的一种新的信号处理手段。常用的多麦克风波束形成技术有:DSB(delay-sumbeamforming),MVDR(minimumvariancedistortionlessresponse),GSC(generalizedsidelobecanceller).阵列流形矢量任意阵列在一个三维直角坐标系中,假设
- x264 码率控制中自适应量化模式 AQ mode分析
DogDaoDao
#x264H264x264码率控制AQmode视频编解码实时音视频VP8
AQmodeAdaptiveQuantizationmode,即自适应量化模式,根据MB的复杂度来调整每个MB量化时的量化参数。该模式可以更好地将码率分配到各个宏块中,以获得更好的视频质量和压缩效果。x264中与之相关的参数i_aq_mode、f_aq_strength。i_aq_mode1.i_aq_mode取值为X264_AQ_NONE(0)、X264_AQ_VARIANCE(1)、X264_
- ORA-00937: not a single-group group function说明及解决方法(E文)
javaPie
Oracle
ORA-00937:notasingle-groupgroupfunction说明及解决方法(E文)转载2009年03月15日21:17:00标签:function/include/list/user/sql21110ASELECTlistcannotincludebothagroupfunction,suchasAVG,COUNT,MAX,MIN,SUM,STDDEV,orVARIANCE,an
- 改进神经网络
stoAir
神经网络机器学习人工智能
ImproveNN文章目录ImproveNNtrain/dev/testsetBias/VariancebasicrecipeRegularizationLogisticRegressionNeuralnetworkotherwaysoptimizationproblemNormalizinginputsvanishing/explodinggradientsweightinitializegra
- 高质量实时渲染笔记
Magic__Conch
笔记
文章目录Real-timeshadows1自遮挡问题2解决阴影detach问题?3Aliasing4近似积分5percentageclosersoftshadows(PCSS)percentacloserfiltering(PCF)PCSS的思想6VarianceSoftShadowMapping(VSSM)步骤MomentShadowMapping7DistancefieldshadowReal
- 机器学习-集成学习(模型融合)方法概述
毛飞龙
机器学习集成学习模型融合
概述模型融合方法广泛应用于机器学习中,其原因在于,将多个学习器进行融合预测,能够取得比单个学习器更好的效果,实现“三个臭皮匠,顶一个诸葛亮”,其原因在于通过模型融合,能够降低预测的偏差和方差。本文对模型融合中常见的三种方法进行一个简要介绍:包括Bagging、Boosting、Stacking。偏差(Bias)与方差(Variance)假设对数据集中一个样本进行n次预测,偏差是预测期望值与样本值的
- 论文解读:DeepBDC小样本图像分类
十有久诚
小样本图像分类人工智能机器学习深度学习小样本图像分类元学习
JointDistributionMatters:DeepBrownianDistanceCovarianceforFew-ShotClassification摘要由于每个新任务只给出很少的训练样例,所以few-shot分类是一个具有挑战性的问题。解决这一挑战的有效研究路线之一是专注于学习由查询图像和某些类别的少数支持图像之间的相似性度量驱动的深度表示。统计上,这相当于测量图像特征的依赖性,被视为
- Fisher线性判别分析
Sanchez·J
美赛算法机器学习人工智能
Fisher线性判别分析原理LDA(LinearDiscriminantAnalysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。Fisher线性判别分析主要包括两个目标:最大化类间方差(MaximizeBetween-ClassVariance):通过找到一个
- Bias 和 Variance 理解
phusFuNs
一篇很不错的讲解Bias和Variance的文章:http://scott.fortmann-roe.com/docs/BiasVariance.html从三个角度去定义Bias和Variance概念上ErrorduetoBias:表示我们的模型预测的期望值(或者叫平均值)与模型想要努力接近真实值的difference。注意一点,这里的期望值是指,你可以通过多个数据集(随机性)来训练多个模型(参数
- 【转】深度学习中的正则化(Regularization)
是我真的是我
转自:http://www.imooc.com/article/69484一、Bias(偏差)&Variance(方差)在机器学习中,这两个名词经常让我们傻傻分不清。我们不妨用案例来看看怎么区分。假设我们正在做一个分类器,分别在训练集和验证集上测试,以下为四种可能的情况:四种情况可见①、④两种情况的训练集误差都很小,接近optimalerror,这种就称为lowbias。说明训练的很到位了。相反,
- 总体方差与样本方差的区别是什么?
CA&AI-drugdesign
线性代数&人工智能概率论线性代数
总体方差和样本方差是统计学中两个重要概念,它们在定义和计算上有所不同,主要区别体现在数据集的性质和计算公式的分母上:1.总体方差(PopulationVariance):定义:总体方差是指将一个完整数据集(即总体)中的每个数值与总体平均数的差的平方求和,然后除以总体中的数值数量。.特点:总体方差考虑了所有的数据点,用于当你拥有整个数据集或总体数据时。总体方差的应用场景:假设你是一家手机制造公司的质
- 方差与协方差之间的区别?
CA&AI-drugdesign
线性代数&人工智能概率论机器学习人工智能
方差和协方差都是用来衡量随机变量之间关系的统计量,但它们的计算方式和含义有所不同。方差(Variance):方差是描述数据集合离散程度的统计量,它衡量了数据点与均值之间的平均距离。方差越大,表示数据点越分散;方差越小,表示数据点越集中。方差的计算公式如下:其中,xi是数据集中的每个数据点,μ是数据集的均值,n是数据点的数量。协方差是衡量两个随机变量之间关系的统计量,它描述了这两个变量的变化趋势是否
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring