- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 使用ffmpeg将pcm格式音频转化为mp3格式音频
布丁小站
ffmpegpcm音视频
voidAudioCode::ENcode(AVCodecContext*cdc_ctx,AVFrame*frame,AVPacket*pkt){intret=0;/*sendtheframeforencoding*/ret=avcodec_send_frame(cdc_ctx,frame);if(ret=0){ret=avcodec_receive_packet(cdc_ctx,pkt);if(
- 全面指南:用户行为从前端数据采集到实时处理的最佳实践
数字沉思
营销流量运营系统架构前端内容运营大数据
引言在当今的数据驱动世界,实时数据采集和处理已经成为企业做出及时决策的重要手段。本文将详细介绍如何通过前端JavaScript代码采集用户行为数据、利用API和Kafka进行数据传输、通过Flink实时处理数据的完整流程。无论你是想提升产品体验还是做用户行为分析,这篇文章都将为你提供全面的解决方案。设计一个通用的ClickHouse表来存储用户事件时,需要考虑多种因素,包括事件类型、时间戳、用户信
- 详解 Flink 的常见部署方式
文刀小桂
Flinkflink大数据
一、常见部署模式分类1.按是否依赖外部资源调度1.1Standalone模式独立模式(Standalone)是独立运行的,不依赖任何外部的资源管理平台,只需要运行所有Flink组件服务1.2Yarn模式Yarn模式是指客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会在Yarn的NodeManager上创建容器。在这些容器上,Flink
- GD32的虚拟串口CDC的一些注意事项
跳动的代码
单片机mcu
在移植GD32CDC的USB虚拟串口,即CDC设备时,需要注意一下几点。我这里已GD32E503为例。1、时钟要正确,GD32E503的时钟必须为168M才能用2、硬件问题,GD32E503的USB必须要三个脚,除了DPDM外,还有DP一个上拉脚要配置。3、不要忘了移植中断部分代码,USB是有中断函数的。4、关于CDC的发送和接收问题:用官方的例程,发送和接收是没问题的。但是在我们代码里是不能直接
- 大数据之flink与hive
星辰_mya
大数据flinkhive
其实吧我不太想写flink,因为线上经验确实不多,这也是我需要补的地方,没有条件创造条件,先来一篇吧flink:高性能低延迟流批一体的分布式计算框架基于事件时间对实时数据精准处理快速响应支持批处理,高效离线分析和数据挖掘数据仓库的引擎丰富数据源/接收器,集成多种数据存储格式和源,比较常见就是咱们今天的主题hive了checkpoint恢复机制,故障恢复快速恢复计算任务分布式弹性扩展,据业务灵活增加
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 一文搞懂 Flink Task 数据交互之数据写源码
mn_kw
flink交互java
一文搞懂FlinkTask数据交互之数据写源码1.RecordWriterOutput2.RecordWriter3.数据分区器ChannelSelector4.数据输出模型ResultPartition5.子模型ResultSubpartition6.本地buffer池LocalBufferPool7.获取buffer8.将buffer添加到ResultSubpartitionFlink重要源码
- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- Python基础知识进阶之正则表达式_头歌python正则表达式进阶
前端陈萨龙
程序员python学习面试
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 大数据新视界 --大数据大厂之Flink强势崛起:大数据新视界的璀璨明珠
青云交
大数据新视界Flink大数据数据类型实时处理流处理框架对比应用场景数据处理大数据新视界数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
- flink增量检查点降低状态依赖实现的详细步骤
goTsHgo
Flink大数据分布式flink大数据
增量检查点启动恢复的时间是很久的,业务上不能接受,所以可以通过降低状态依赖来减少恢复的时间。降低状态依赖尽可能减少状态的复杂性和依赖关系,通过拆分状态或将状态外部化到其他服务中,从而降低恢复的开销。实施措施:将状态分割为更小的单元,减少每次恢复的状态量。使用外部状态存储服务,减少Flink状态后端的负担。拆分状态和将状态外部化到其他服务可以帮助减少作业的状态依赖,从而降低恢复时间和复杂度。以下是详
- flink table factory基础知识
loukey_j
一、概述在flink中很多组件都是TableFactory的子类。比如序列化,反序列化,tableSinkFactory,tableSourceFactory.TableFactory是用来创建序列化,反序列器,tableSource和tableSink的工厂。二、TableFactory源码在flink框架中,TableFactory的子类并不是程序员自己随心new出来的。flink的提供给程序
- 2024年最全使用Python求解方程_python解方程(1),字节面试官迟到
2401_84569545
程序员python学习面试
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 01-Flink安装部署及入门案例(仅供学习),音视频时代你还不会NDK开发
小猪佩琪962
2024年程序员学习flink学习大数据
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- Apache Flink:实时流处理与批处理的统一框架
小码快撩
flink大数据
导语在大数据处理领域,流处理和批处理是两种主要的处理方式。然而,传统的系统通常将这两者视为独立的任务,需要不同的工具和框架来处理。ApacheFlink是一个开源的流处理框架,它打破了这种界限,提供了一个统一的平台来处理实时流数据和批处理数据。一、基本概念与架构ApacheFlink的基本概念与架构主要包括以下几个核心组成部分:基本概念1.流处理模型:无界流(UnboundedStreams):数
- flink独立集群部署
嘎子吱吱吱吱
flinkhadooplinux
#flink独立集群部署说明安装环境三台服务器47.106.23.1(master)47.112.173.2(worker1)47.115.162.3(worker1)提前装好jdk和ssh,以下操作最好不要用root账号提前下载好flink的包并解压设置三台服务器之间ssh免密登录生成本机秘钥以47.106.23.1为例(其他两台参考本服务器)#生成本机秘钥cd;ssh-keygen-trsa-
- FPGA时序分析
远行者223
FPGAleariningfpga开发
FPGA时序分析1.1亚稳态FPGA中亚稳态【Tsu建立时间】【Th保持时间】【Tmet决断时间】【recovery恢复时间】【removal移除时间】1.2跨时钟域分析CDC跨时钟域处理及相应的时序约束【set_clock_groups】【set_max_delay】1.3全局复位Xilinx全局复位要点1.4数制与进制原码、反码、补码补码对于有符号负数是先取反再加一,勿弄反典型例题展示
- Flink的时间与watermarks详解
大数据技术与数仓
当我们在使用Flink的时候,避免不了要和时间(time)、水位线(watermarks)打交道,理解这些概念是开发分布式流处理应用的基础。那么Flink支持哪些时间语义?Flink是如何处理乱序事件的?什么是水位线?水位线是如何生成的?水位线的传播方式是什么?让我们带着这些问题来开始本文的内容。时间语义基本概念时间是Flink等流处理中最重要的概念之一,在Flink中Time可以分为三种:Eve
- 实时数仓之实时数仓架构(Hudi)(1)
2401_84164527
程序员架构
目前比较流行的实时数仓架构有两类,其中一类是以Flink+Doris为核心的实时数仓架构方案;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对Flink+Hudi湖仓一体架构进行介绍,这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数仓架构图如下:技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据
- 2024年大数据最新实时数仓之实时数仓架构(Hudi)
2401_84185556
程序员大数据架构
技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据可以忽略;Flink:用于数据ETL,包括接入数据、处理数据及输出数据全链路数据计算任务;Spark:用于数据ETL,包括处理数据及输出数据全链路数据计算任务;Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;Doris:O
- 实时数仓之实时数仓架构(Hudi)(1),2024年最新熬夜整理华为最新大数据开发笔试题
2401_84181221
程序员架构大数据
+Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;+Doris:OLAP引擎,同步数仓结果模型,对外提供数据服务支持;+Hbase:用来存储维表信息,维表数据来源一部分有Flink加工实时写入,另一部分是从Spark任务生产,其主要作用用来支持FlinkETL处理过程中的LookupJoin功能。这里选用Hbase原因主要因为Table的HbaseC
- Flink - CEP
kikiki1
Hadoop3.2集群新版本的搭建详细讲解过程,从下面第一张官方的图来看,最新版是3.2,所以大猪将使用3.2的版本来演示,过程中遇到的坑留给自己,把路留给你们,IT之路还有大猪。大猪为了把文章压缩极简方便小伙伴阅读,将使用root帐号进行所有操作。准备两台主机10.211.55.11、10.211.55.12对应的hostname为m1.example.com、m2.example.com具体命
- chapter01 Java语言概述 知识点Note
月下绯烟
Javajava开发语言
JavaSEJavaEEJavaME大数据Java基础常用技术栈mysqlJDBCSSMspring+springmvc+mybatisLinuxnacosHadoopFlinkJAVAEE消息队列rabbitMQdocker数据库redisspringbootspringcloudsshstruts+spring+hibernate过时技术栈很少用JAVA虚拟机jvm分布式微服务高并发常见dos
- 【无标题】大数据之批处理,流处理,批流一体概念
数字天下
大数据
批处理批处理是将一定量的数据集合在一起,形成一个数据批次,然后对这个批次中的数据进行处理。Spark和Flink都支持批处理,其中Spark使用的是批处理模型,即将一批数据一次性读入内存,然后对其进行处理,处理完成后再将结果写入磁盘。Flink也支持批处理,但使用的是基于流处理的批处理模式,即将一批数据分成多个数据流进行处理,可以实现更高效的内存管理和更低的延迟。流处理流式处理是一种将数据流式地处
- python flink_《Flink官方文档》Python 编程指南测试版
weixin_39846361
pythonflink
原文链接译者:hjjxd校对:清英Flink中的分析程序实现了对数据集的某些操作(例如,数据过滤,映射,合并,分组)。这些数据最初来源于特定的数据源(例如来自于读文件或数据集合)。操作执行的结果通过数据池以写入数据到(分布式)文件系统或标准输出(例如命令行终端)的形式返回。Flink程序可以运行在不同的环境中,既能够独立运行,也可以嵌入到其他程序中运行。程序可以运行在本地的JVM上,也可以运行在服
- flink---window
搞数据的小杰
flink大数据
Window介绍DataStream:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/datastream/operators/windows/SQL:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/table/
- Flink(1.13) 的window机制(一)
万事万物
窗口概述在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理。当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算。流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数
- pyflink 自定义函数
scan724
Flink实时计算python开发语言
frompyflink.datastreamimportStreamExecutionEnvironmentfrompyflink.common.typeinfoimportTypesfrompyflink.datastreamimportStreamExecutionEnvironmentfrompyflink.tableimportStreamTableEnvironmentfrompyfli
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo