- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 幂等性非侵入式实现
十一技术斩
面试mysqljava后端数据库
幂等性今天我们来谈谈什么是幂等性?引用百度百科的解析如下:幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函
- 智能机器人与旋量代数(3)
Metaphysicist.
智能机器人与旋量代数机器人
Chapt2.李群李代数的基本理论2.1群论的基本概念(TheTheoryofGroups)群的概念最初是由19世纪的数学家伽罗瓦提出的,群是抽象代数中的一类结构,,它与研究对称性紧密相关,如代数方程的对称性以及几何图形的对称性(同样的群甚至可以表达几个不同种类物体的对称性)。通常可以认为群是所有对称运算的集合,群论从本质上来讲就是一种描述各种各样的对称性的数学工具。定义2.1群是指可对其元素gg
- 【无标题】
数学专业的小白
考研
考研过了一周,是不是该准备研究生复试了?结合自身经历谈谈研究生复试需要注意的事项:注意复试科目和形式每个学校复试科目和形式都大不一样,以数学专业举例,有的学校复试科目较多,如复变函数、实变函数、抽象代数、泛函分析()等;有的学校只需复试一个科目(必选一个科目)。现在估计是线下面试为主了,有的学校要求制作PPT或者简历,这个必须注意,PPT和简历上写的每个内容,都要经得起推敲,问起来必须能够回答出来
- 格密码基础:q-ary格
唠嗑!
格密码格密码线性代数格基
目录一.格密码的重要性二.格密码基础2.1格点的另一种理解方式三.q-ary格3.1q-ary垂直格3.2q-ary格3.3二者结合四.论文中的q-ary格4.1定理14.2定理24.3定理3一.格密码的重要性格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是上的子群。格密码近些年非常火热,主要由于以下几点:抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最
- 如何保证分布式情况下的幂等性
豆奶快攻
设计模式设计Java分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 线性代数一
刘瞧瞧
线性代数
每日学习刘瞧翘线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。概念线性代数是代数学的一个分
- 【密码学】抽象代数——群(学习笔记)
aching_
密码学学习笔记密码学信息安全抽象代数
群1、运算及关系运算的本质:两个元素经过一定的法则得到一个元素。(加减乘除)运算的规律:交换律、结合律、分配律交换律ab=ba结合律a(bc)=(ab)c分配律a∘(b+c)=a∘b+a∘c关系:非空集合A中对两个元素而言的一种性质,使A中任何两个元素,或有这种性质,或没有这种性质,二者必居其一。例:关系为“>”,A中任意两个元素,或大于,或不大于。(总有属于一种)等价关系:非空集合A中定义了关系
- 抽象代数笔记2——群
rsy56640
数学
CSDN前端有毒,Latex写出来排版全乱……………………………………………………………………………………………….群的定义:设GG是一个非空集合,“oo”是GG上的二元代数运算,称为乘法。如果下列条件成立,则称GG对它的乘法“oo”构成一个群(Group)。1.乘法“oo”满足结合律。2.对乘法“oo”,GG中有一个左幺元ee。即∀a∈G,eoa=a∀a∈G,eoa=a3.对乘法“oo”,GG中
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数据幂等
carl_zhao
在系统设计的时候,操作幂等设计是一点需要考虑的点。幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。用数学表达式来表达的话:f(x)=f(f(x))1、数据库幂等幂等性是后续多余的调用不会对系统数据的一致性进行破坏。在数据库操作一般会有增、删、查、改4类操作。下面我们来看这4
- 抽象代数 04.07 Jordan-Holder定理
longji
抽象代数抽象代数Jordan-Holder定理
http://www.icourses.cn南开大学《抽象代数》§4.7Jordan-Holder定理{\color{blue}{\text{\S4.7Jordan-Holder定理}}}§4.7Jordan-Holder定理可解群存在次正规序列使得因子都是素数阶循环群,且所有因子的阶的乘积为群G的阶。定义4.7.1.称群G的次正规序列{\color{blue}定义4.7.1.}称群G的次正规序列
- 分布式服务的幂等性的个人见解
是王威啊
概念幂等的概念来自于抽象代数,比如对于一元函数来说,满足如下条件:f(f(x))=f(x)即可称为满足幂等性。在计算机科学中,一个操作多次执行和一次执行的影响相同,这样的操作即符合幂等性。在分布式的系统中,服务消费方调用服务提供方的接口,多次调用的结果应该与一次调用的结果相同,这就是分布式环境下的幂等性的语义。为什么都在强调幂等性?因为分布式服务系统有可能因为网络不稳定原因导致一个服务的接口被重复
- 抽象代数简介
景知育德
集合交集·并集·差集在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念:幂集设是一个集合,那么的所有子集为成员构成的几何成为是幂集,记作。笛卡尔积设是两个集合,定义集合称为与的笛卡尔积,又称卡氏积,集合积。基数集合中元素个数称为集合的基数,记作。如果是无限的,则,称是无限集,否则是有限集。关系集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生
- 如何保证分布式情况下的幂等性
Elivis Hu
架构师分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 【分布式】: 幂等性和实现方式
无难事者若执
分布式架构中间件1024程序员节分布式java
【分布式】:幂等性和实现方式幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函数就是一个幂等函数,无论多次执
- 抽象代数 01.05 循环群
longji
抽象代数抽象代数循环群
http://www.icourses.cn南开大学《抽象代数》§1.5循环群{\color{blue}\text{\S1.5循环群}}§1.5循环群定义1.5.1由一个元素a反复运算生成的群{\color{blue}定义1.5.1\quad}由一个元素a反复运算生成的群定义1.5.1由一个元素a反复运算生成的群G={an∣n∈Z}\qquadG=\lbracea^n|n\in\Z\rbraceG
- 【抽象代数】同态同构、循环群
karwen(^.^)
抽象代数抽象代数
同态与同构同态定义两个代数系统(A,o),(A‾,o‾)(A,o),(\overline{A},\overline{o})(A,o),(A,o),如果存在映射φ:A→A‾\varphi:A\rightarrow\overline{A}φ:A→A,若对于任意的a,b∈Aa,b\inAa,b∈A,都有φ(aob)=φ(a)o‾φ(b)\varphi(a\o\b)=\varphi(a)\overline
- 矩阵理论名词解释表
qq_34966169
矩阵线性代数
参考书链接:https://pan.baidu.com/s/1uWudKozeTvC_3nREy5hAKQ?pwd=6he0提取码:6he0–来自百度网盘超级会员V5的分享1.复数F实数R和复数C域,不包含其他数域F域(Field)是抽象代数中的一个重要概念,它是一种包含了加法和乘法运算的代数结构。F域是数学中的一种代数结构,通常用于研究线性代数、数论、编码理论、密码学等领域。F域具有以下性质:封
- 我们来谈下高并发和分布式中的幂等处理
java高并发
我们先来谈下幂等的概念抽象概念幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。复制代码在编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTru
- 接口幂等性总结整理
Mr_Chao3
1、什么是幂等性幂等,英文Idempotence幂等这个词原自数学,幂等性是数学中的一个概念,常见于抽象代数中,表达的是N次变换与1次变换的结果相同;简单来说就是如果方法调用一次和多次产生的效果是相同的,它就具有幂等性。幂等函数或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数,这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。幂等性(Idempotence)本身是一个数
- DH算法原理
spyder_men
DH算法原理DH是Diffie-Hellman的首字母缩写,是Whitefield与MartinHellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为密钥协商协议而RSA算法是密钥交换算法。本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部分介绍一下DH算法的的步骤,以及由该算法引出的一些问题;第三部分开始讲数学原理。数学原理可能涉及到数论、抽象代数,本篇尽量在每个公
- 使用ChatGPT进行个性化学习
chatgpt机器学习
推荐:将NSDT场景编辑器加入你的3D工具链3D工具集:NSDT简石数字孪生在这篇文章中,您将发现ChatGPT作为机器学习和数据科学爱好者的个人导师的好处。特别是,您将学习如何让ChatGPT引导你学习抽象代数如何让ChatGPT帮助您准备数据科学面试让我们开始吧。使用ChatGPT作为您的个性化教师概述这篇文章分为三个部分;它们是:在12周内掌握线性代数机器学习面试的自我测验提示提示以增强学习
- 文学的作用
伏晶之心
这些年做个人成长的事情,听了很多人的成长故事。林林总总,奇奇怪怪,意想不到,下限无限。我慢慢开始理解文学的作用。文学就是人生经历、人生故事的数学模型,是一种不同人的人生统计。然后,通过提纯、抽象、文笔加工,变成了精细制作的高信息密度文艺产品,反过来作用于心智,影响具体的人生。如果是每个人的生活是一个具体的数,文学就是代数,关于文学的评论以及美学,就是抽象代数。如果是每个人的生活是具体的传统产业,实
- 向量空间的定义
Obj_Arr
一个向量空间包括三块,基础集,两种二元运算,加法,标量乘。暂且用实数域的符号表示,比较熟悉。然后还必须满足一些性质,基础集关于加法运算构成阿贝尔群,基础集关于标量乘构成一个左作用。结合起来就是向量空间是标量域的R-Mod。也称之为左模。环上的模,就是抽象代数结构环上定义的另一种代数结构,环上的典型的阿贝尔群就是环上的加法子群。左作用,更像是函数作用,要求满足结合性,关于加法的两种分配律,最后是恒等
- 从体育运动来理解数学空间
tiger007lw
还记得刚开始看到什么希尔伯特空间、巴拿赫空间中时,作为一个体育迷和运动爱好者脑中浮现的就是排球场和田径场,然后就是三维坐标构成的现实空间,但是为什么数学上又会有抽象空间,很长一段时间都未明白。后来学了群、环、域抽象代数结构,再重新复习了线性空间后再反过来才逐渐理解了各种不同的数学空间。对一个抽象系统赋予一个看得见、摸得着现实系统进行类比才更容易让人理解,鉴于这是一个如此重要又是许多人都没有明白
- 抽象代数
早安我的猫咪
有限域域是一个可以在其上进行加法、减法、乘法和除法运算而结果不会超出域的集合。如整数集合不是(很明显,使用除法得到的分数或小数已超出整数集合。如果域只包含有限个元素,则称其为有限域。有限域中元素的个数称为有限域的阶。每个有限域的阶必为素数的幂,即有限域的阶可表示为pⁿ(p是素数、n是正整数),该有限域通常称为Galois域(GaloisFields),记为GF(pⁿ)。当n=1时,存在有限域GF(
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方