Problem Statement |
|||||||||||||
A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a zig-zag sequence. For example, 1,7,4,9,2,5 is a zig-zag sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, 1,4,7,2,5 and 1,7,4,5,5 are not zig-zag sequences, the first because its first two differences are positive and the second because its last difference is zero. Given a sequence of integers, sequence, return the length of the longest subsequence of sequence that is a zig-zag sequence. A subsequence is obtained by deleting some number of elements (possibly zero) from the original sequence, leaving the remaining elements in their original order. |
|||||||||||||
Definition |
|||||||||||||
|
|||||||||||||
Constraints |
|||||||||||||
- | sequence contains between 1 and 50 elements, inclusive. | ||||||||||||
- | Each element of sequence is between 1 and 1000, inclusive. | ||||||||||||
|
题目中ZigZag序列即“小-大-小-大-小-大-小”,使用两个数组pos[i],neg[i]分别表示当前数字sequence[i]以‘大’结尾,以‘小’结尾。
要求轮流变大变小的最长序列,即最长递增子序列的变种。
例如序列: 1 17 5 10 13 15 10 5 16 8
i = 0 1 2 3 4 5 6 7 8 9 sequence = 1 17 5 10 13 15 10 5 16 8 pos[i] = 1 2 2 4 4 4 4 2 6 6 neg[i] = 1 1 3 3 2 2 5 5 3 7
首先,令pos[i]=neg[i]=1
递推公式
sequence[i]>sequence[j], pos[i]=max(neg[j]+1,pos[i])-----------------------------①
sequence[i]<sequence[j] , neg[i]=max(pos[j]+1,neg[i])----------------------------②
假设现在i=1 , j=0:
由① 即pos[1]=max(neg[0]+1,pos[1])→pos[1]=2
现在i=2,j=0,1
i=2,j=0:
sequence[2]>sequence[0], 由① 即pos[2]=max(neg[0]+1,pos[2])→pos[2]=2
i=2,j=1:
sequence[2]<sequence[1], 由② 即neg[2]=max(pos[1]+1,neg[2])→neg[2]=3
现在i=3,j依次等于0,1,2
i=3,j=0:
sequence[3]>sequence[0],由① 即pos[3]=max(neg[0]+1,pos[3])→pos[3]=2
i=3,j=1:
sequence[3]<sequence[1], 由② 即neg[3]=max(pos[1]+1,neg[3])→neg[3]=3
i=3,j=2:
sequence[3]>sequence[2],由① 即pos[3]=max(neg[2]+1,pos[3])→pos[3]=4
以此类推...可以得出pos neg数组对应的各个数字相应的最长zigzag序列长度,取最大值就是要求的。
代码如下:
#include <iostream> #include <fstream> #include <vector> #include <string> #include <algorithm> #include <map> #include <stack> #include <cmath> #include <queue> #include <set> #include <list> #include <cctype> #include <stdio.h> #include <stdlib.h> #include <string.h> #define REP(i,j,k) for(int i = j ; i < k ; ++i) #define MAXV (1000) #define INF (0x6FFFFFFF) using namespace std; class ZigZag { public: int longestZigZag(vector <int> sequence) { int pos[55]; int neg[55]; int ans=0; for(int i=0; i<sequence.size(); i++) { pos[i]=1; neg[i]=1; for(int j=0; j<i; j++) { if(sequence[i]>sequence[j]) pos[i]=max(neg[j]+1,pos[i]); else if(sequence[i]<sequence[j]) neg[i]=max(pos[j]+1,neg[i]); } ans=max(ans,pos[i]); ans=max(ans,neg[i]); } return ans; } }; int main() { int _x[] = { 70, 55, 13, 2, 99, 2, 80, 80, 80, 80, 100, 19, 7, 5, 5, 5, 1000, 32, 32 }; vector<int> x(_x , _x + sizeof(_x)/sizeof(_x[0])); ZigZag z; printf("%d\n",z.longestZigZag(x)); return 0; }