Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3)。
使用条件&范围
通常可以在任何图中使用,包括有向图、带负权边的图。
Floyd-Warshall 算法用来找出每对点之间的最短距离。它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径。
1.注意单独一条边的路径也不一定是最佳路径。
2.从任意一条单边路径开始。所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连。
对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3.不可思议的是,只要按排适当,就能得到结果。
伪代码:
//dist(i,j) 为从节点i到节点j的最短距离
For i←1 to n do
For j←1 to n do
dist(i,j) = weight(i,j)
For k←1 to n do // k为“媒介节点”
For i←1 to n do
For j←1 to n do
if (dist(i,k) + dist(k,j) < dist(i,j)) then // 是否是更短的路径?
dist(i,j) = dist(i,k) + dist(k,j)
我们平时所见的Floyd算法的一般形式如下:
voidFloyd(){
int i,j,k;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(dist[i][k]+dist[k][j]<dist[i][j])
dist[i][j]=dist[i][k]+dist[k][j];
}
注意下第6行这个地方,如果dist[i][k]或者dist[k][j]不存在,程序中用一个很大的数代替。最好写成if(dist[i] [k]!=INF && dist[k][j]!=INF &&dist[i][k]+dist[k][j]
Floyd算法的实现以及输出最短路径和最短路径长度,具体过程请看【动画演示Floyd算法】。
代码说明几点:
1、A[][]数组初始化为各顶点间的原本距离,最后存储各顶点间的最短距离。
2、path[][]数组保存最短路径,与当前迭代的次数有关。初始化都为-1,表示没有中间顶点。在求A[i][j]过程中,path[i][j]存放从顶点vi到顶点vj的中间顶点编号不大于k的最短路径上前一个结点的编号。在算法结束时,由二维数组path的值回溯,可以得到从顶点vi到顶点vj的最短路径。
初始化A[][]数组为如下,即有向图的邻接矩阵。
题目大意:
给出两只青蛙的坐标A、B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的。显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中又有一个最大距离。
现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离作为青蛙的最小跳远距离。
Floyd算法
用Floyd算法求出两两最短路,再求出从每个点开始的最长路,最后从这n个最长路中求出最小的那个即为所求。
#include<iostream> #include<math.h> #include<iomanip> using namespace std; class coordinate { public: double x,y; }point[201]; double path[201][201]; //两点间的权值 int main(void) { int i,j,k; int cases=1; while(cases) { /*Read in*/ int n; //numbers of stones; cin>>n; if(!n)break; for(i=1;i<=n;i++) cin>>point[i].x>>point[i].y; /*Compute the weights of any two points*/ for(i=1;i<=n-1;i++) for(j=i+1;j<=n;j++) { double x2=point[i].x-point[j].x; double y2=point[i].y-point[j].y; path[i][j]=path[j][i]=sqrt(x2*x2+y2*y2); //双向性 } /*Floyd Algorithm*/ for(k=1;k<=n;k++) //k点是第3点 for(i=1;i<=n-1;i++) //主要针对由i到j的松弛,最终任意两点间的权值都会被分别松弛为最大跳的最小(但每个两点的最小不一定相同) for(j=i+1;j<=n;j++) if(path[i][k]<path[i][j] && path[k][j]<path[i][j]) //当边ik,kj的权值都小于ij时,则走i->k->j路线,否则走i->j路线 if(path[i][k]<path[k][j]) //当走i->k->j路线时,选择max{ik,kj},只有选择最大跳才能保证连通 path[i][j]=path[j][i]=path[k][j]; else path[i][j]=path[j][i]=path[i][k]; cout<<"Scenario #"<<cases++<<endl; cout<<fixed<<setprecision(3)<<"Frog Distance = "<<path[1][2]<<endl; //fixed用固定的小数点位数来显示浮点数(包括小数位全为0) //setprecision(3)设置小数位数为3 cout<<endl; } return 0; }