- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 排列数+时间戳+逆元取模
wniuniu_
算法算法
前言:这个题目是真的难,不会做,看了题解才发现是咋回事题目地址最主要的就是为啥是除以3,c之前需要完成a和b,d和e对我们的答案没有影响,所以我们要除以A(3,3),但是a和b的排列没有要求,所以乘以A(2,2)抵消得到3#includeusingi64=longlong;usingu64=unsignedlonglong;consti64mod=1e9+7;i64ksm(i64a,i64b){i
- 牛客小白月赛61-E-排队
LonelyGhosts
算法
很好的一道题啊,学到了不少东西!!!!首先是一个结论逆序对总数=n!/2*不相等的数字对数(1)不相等的数字对数怎么求结论不相等的数字对数=C(n,2)-∑C(2,cnt(i))(i数字的出现次数)(2)n!/2怎么处理,有取模的除运算怎么处理???这块一直不会,今天一学才发现,就是之前学过的乘法逆元,学过就忘,不愧是我(doge这里只说怎么处理,证明之类的不写了a/b%mod的情况,可以求b的乘
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 预处理组合数和逆元o(n)
顾客言
java算法数据结构
intfact[N],infact[N];intqpow(inta,intb){intres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}voidinit(){fact[0]=1;for(inti=1;i=1;i--)infact[i-1]=infact[i]*i%mod;}intC(intn,intm){returnfa
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- P6046 纯粹容器
DBWG
洛谷算法
纯粹容器-洛谷首先先看几个通用的知识点:1.费马小定理+快速幂求逆元(求倒数)当mod为质数的时候可以使用费马小定理llksm(intx,inty){if(x==1)return1;llres=1,base=x;while(y){if(y&1)res=(res*base)%mod;base=(base*base)%mod;y>>=1;}returnres;}intinv(intaim)//inve
- 倒计时59天
算法怎么那么难啊
算法c++
(来源:b站左程云up099)一:求逆元:1)要保证a可以整除b2)要保证mod的是一个质数3)b和mod互质题目2)3)一般都满足,主要是1)方法:如求1.(10/5)%modmod=35的逆元其实就等于(5的mod-2次方)%mod=5%3=2;然后用10%mod=1,结果就等于(分母的逆元乘以分子mod后的值)%mod,即(2*1)%3=2!2.(18/6)%modmod=5先求6的逆元,就
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [51Nod]1013 3的幂的和
闭门造折
很有代表性的一道题,用到了快速幂和逆元题干求:3^0+3^1+...+3^(N)mod1000000007快速幂参考资料《基础算法—快速幂详解》快速幂的原理是,计算m^k次方的时候,通过k的二进制值将k拆分成2^i+2^j+...,通过不断地平方运算快速计算m的k次方逆元这个真是个奇妙的东西以1013题为例,整个证明过程如下:原式=[1-3^(n+1)]/(1-3)=[3^(n+1)-1]/2[1
- 【算法竞赛模板】质因子、质数、约数、余数、快速幂(数论大全)
Ac君
算法学习c++数论质数约数蓝桥杯
常用数论的算法模板一、质因子二、质数三、约数①试除法求一个数所有约数②求约数个数③求约数和④求最大公约数gcd辗转相除扩展欧几里得反素数同余定理费马小定理(快速幂求逆元)四、余数五、组合数①DP求组合数②逆元求组合数③卢卡斯定理求组合数④高精度大数求组合数六、快速幂 苟蒻发文,若有任何不足、错误的地方欢迎大佬们来斧正~本苟蒻不胜感激(>人<;)一、质因子 定义:指能整除给定正整数的质数 性质
- 线段树简单使用 P4588 数学计算 总结
why_not_fly
算法
传送门https://www.luogu.com.cn/problem/P4588心路历程一开始确实没想到能切换成线段树,毕竟它一无区间二无线段,我第一眼看到题以为是一个大大大模拟,但是这里不能用逆元(并不互质)于是,运用一点思维,我们发现可以把一个区间全设成1(大小就是查询次数),每一次修改就修改那个点,第二种除法就将那个点化成1,这样维护一个区间,区间根节点的值就是答案当然我一开并没马上反应过
- 离散数学_代数系统
先生先生393
考研
代数系统目录代数系统1.1二元运算及其性质1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零元逆元可消去元1.3代数系统的概念1.4代数系统的性质编辑编辑编辑2.1半群2.2群与子群2.3子群及其证明子群的陪集2.4循环群:生成元编辑编辑循环群的子群1.1二元运算及其性质性质在这里减法不封闭,因为减法可能得出负数通过看是否以主对角线元素对称1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零
- 卢卡斯定理/Lucas定理板子 组合数板子
DBWG
板子算法数据结构
a是阶乘数组,提前处理好,处理到模数应该够的。ksm快速幂C是组合数函数,ksm是用来费马小定理求逆元(即倒数)。就是组合数公式,n的阶乘除以(m的阶乘和n-m的阶乘)。Lucas卢卡斯定理-OIWiki(oi-wiki.org)lla[100005];llksm(intx,inty,intmod){//因为数据范围很大容易爆掉,所以就要Fast_Powif(x==1)return1;llres=
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- AcWing.876.快速幂求逆元
Die love 6-feet-under
算法c++
给定nnn组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossibleimpossibleimpossible。注意:请返回在0∼p−10∼p−10∼p−1之间的逆元。乘法逆元的定义若整数b,mb,mb,m互质,并且对于任意的整数aaa,如果满足b∣ab|ab∣a,则存在一个整数xxx,使得ab≡a∗x(modm)\frac{a}{b}≡a*x(modm)ba≡a∗
- RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- C++ 数论相关题目 求组合数Ⅱ
伏城无嗔
算法笔记数论力扣c++算法
给定n组询问,每组询问给定两个整数a,b,请你输出Cbamod(109+7)的值。输入格式第一行包含整数n。接下来n行,每行包含一组a和b。输出格式共n行,每行输出一个询问的解。数据范围1≤n≤10000,1≤b≤a≤105输入样例:3315322输出样例:3101除的时候可能是小数,可以变成逆元,除以就等于乘以逆元。#include#includetypedeflonglongLL;usingn
- 逆元的描述及两种常见求解方式
linghyu
算法
求逆元的方法因为在算法竞赛中模数p总是质数,所以可以利用费马小定理:bp−1mod p=1b^{p−1}\modp=1bp−1modp=1可以直接得到所以bp−2b^{p-2}bp−2即为b在modp意义下的逆元llpow(lla,lln,llp)//快速幂a^n%p{llans=1;while(n){if(n&1)ans=ans*a%p;a=a*a%p;n>>=1;}returnans;}ll
- 牛客——小红又战小紫(概率dp和逆元)
垠二
算法概率dp逆元
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。这次是取石子游戏:共有nnn堆石子,两人轮流使用以下两种技能中的一种进行取石子:1.随机选择某一堆石子,取走其中的一颗石子。2.每一堆石子各取走一颗石子。小红先手,谁先取完所有的石子谁获胜。两人都希望自己的获胜概率尽可能高,假设两人都绝顶聪明,请你计算小红最终获胜的概率。#includ
- C++ 数论相关题目(快速幂求逆元)
伏城无嗔
数论力扣算法笔记c++算法
给定n组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossible。注意:请返回在0∼p−1之间的逆元。乘法逆元的定义若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得ab≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数时,bm−2即为b的乘法逆元。输入格式第
- 算法学习系列(二十八):快速幂、逆元
lijiachang030718
算法算法学习
目录引言一、快速幂概念二、代码模板三、例题1.快速幂模板题四、快速幂求逆元引言这个快速幂还是很重要的,算是一个比较基础的问题在数论里面,主要是为了降低时间复杂度用的,然后介绍了逆元的概念以及如何用快速幂来求。一、快速幂概念求akmodpa^{k}\mod\pakmodp,一般就是累积kkk次,时间复杂度为O(N)O(N)O(N)快速幂:先预处理出a20,a21a22⋯a2logka^{2^{0}}
- 线性求逆元(模板题)
:Alarm clock
算法数据结构
直接上AC代码#includeusingnamespacestd;#definelllonglongconstinttwx=3e6+100;constintinf=0x3f3f3f3f;llread(){llsum=0;llflag=1;charc=getchar();while(c'9'){if(c=='-'){flag=-1;}c=getchar();}while(c>='0'&&cusing
- 【数学】二元一次不定方程、裴蜀定理、扩展欧几里得算法与乘法逆元
OIer-zyh
数学#数论c++算法OI数论数学
二元一次不定方程形如ax+by=cax+by=cax+by=c的方程称为二元一次不定方程。在数论中一般研究该方程的整数解。明显原方程无整数解或有无穷多组整数解。裴蜀定理裴蜀定理:当且仅当gcd(a,b)∣c\gcd(a,b)|cgcd(a,b)∣c时,二元一次不定方程有整数解。一方面,ax+by≡0≡c(modgcd(a,b))ax+by\equiv0\equivc\pmod{\gcd(a,b
- MIT18.06线性代数课程笔记20:矩阵逆元计算、克里默法则 以及 行列式与volume、外积的关系
silent56_th
mit18-06麻省理工线性代数矩阵矩阵求逆
课程简介18.06是GilbertStrang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm。课程笔记利用代数余子式计算方阵的逆元,进而求解Ax=b,最后简要阐述了行列式与volume的关系,并对外积做了简要介绍。文中所用图取
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL