问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是(m-1) mod n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m mod n的人开始):
k k+1 k+2 ... n-2,n-1,0,1,2,... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k) mod n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f=(f+m) mod i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
约瑟夫问题的相关子问题。
1.Poj 3517 And Then There Was One
题目链接:http://poj.org/problem?id=3517
题意:固定开始点不是1,而是m。
先去掉一个数,转换成n-1个数的约瑟夫环问题,再将最后结果s=(m+s)%n+1即可.
- #include <stdio.h>
- #include <stdlib.h>
- #include <algorithm>
- #include <string.h>
- #include <math.h>
- #include <iostream>
- using namespace std;
-
- #define Maxn 10100
-
- int f[Maxn];
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("in.txt","r",stdin);
- #endif
- int n,m,k;
- while(scanf(" %d %d %d",&n,&k,&m)!=EOF)
- {
- if(n == 0 && m == 0 && k == 0) break;
- f[1] = 0;
- for(int i=2;i<=n;i++)
- {
- f[i] = (f[i-1] + k)%i;
- }
- printf("%d\n",(f[n-1]+m)%n + 1);
- }
- return 0;
- }
2.Hoj 1016 Joseph's problem I
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=1016
每次的间隔是是质数。我们只要预处理筛一次区间范围内的质数即可。
- #include <stdio.h>
- #include <stdlib.h>
- #include <algorithm>
- #include <string.h>
- #include <math.h>
- #include <iostream>
- using namespace std;
-
- #define Maxn 50000
-
- int prime[Maxn];
- int vis[Maxn];
- int get_Prime(int n)
- {
- memset(vis,0,sizeof(vis));
- int np = 0;
- for(int i=2;i<=n;i++)
- {
- if(!vis[i]) prime[np++] = i;
- long long t;
- for(int j=0;j<np && (t = prime[j]*i)<=n;j++)
- {
- vis[t] = 1;
- if(i%prime[j] == 0) break;
- }
- }
- }
-
- int f[Maxn];
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("in.txt","r",stdin);
- #endif
- get_Prime(Maxn);
- int n;
- while(scanf(" %d",&n)!=EOF && n!=0)
- {
- f[1] = 0;
- for(int i=n-2;i>=0;i--)
- {
- f[n-i] = (f[n-i-1] + prime[i]) % (n - i);
- }
- printf("%d\n",f[n]+1);
- }
- return 0;
- }
3.Hoj 1107 Joseph's problem II
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=1017
k个good guys ,k个bad guys,每次不能杀掉good guy,问最小的m.
解题方法:类似于数组模拟。每次变更start 和end的范围。每次杀掉一个人。下一个的编号变为0。
- #include <stdio.h>
- #include <stdlib.h>
- #include <algorithm>
- #include <string.h>
- #include <math.h>
- #include <iostream>
- using namespace std;
-
- #define Maxn 10100
-
- int f[15];
- bool solve(int k,int m)
- {
- int start = 0,end = k - 1;
- bool flag = true;
- for(int i=2*k;i>k;i--)
- {
- int kill = (m-1)%i;
- if(kill>=start && kill<=end)
- {
- flag = false;
- break;
- }
- start = ((start - m)%i + i)%i;
- end = ((end - m)%i + i)%i;
- }
- return flag;
- }
- void init()
- {
- for(int k=1;k<14;k++)
- {
- for(int m=k+1;;m++)
- {
- if(solve(k,m))
- {
- f[k] = m;
- break;
- }
- }
- }
- }
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("in.txt","r",stdin);
- #endif
- init();
- int k;
- while(scanf(" %d",&k)!=EOF && k!=0)
- {
- printf("%d\n",f[k]);
- }
- return 0;
- }