(1)01背包问题____动态规划

        先谈谈动态规划:

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构;

2. 递归地定义最优解的值;

3. 以“自底向上”的方式计算最优解的值;

4. 从已计算的信息中构建出最优解的路径。

其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。


在dd大牛的《背包九讲》中思路是这样的:


N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}   

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:将前i件物品放入容量为v的背包中这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为i-1件物品放入容量为v的背包中,价值为f[i-1][v];如果放第i件物品,那么问题就转化为i-1件物品放入剩下的容量为v-c[i]的背包中,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]

优化空间复杂度

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

    for v=V..0

        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。{!背过}

 

我们看一下原来的方程f[i][v]=max{f[i-1][v],

f[i-1][v-c[i]]+w[i]}

不一定从1开始,那样会浪费        

过程 ZeroOnePack ,表示处理一件 01 背包中的物品,两个参数 cost weight 分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)

    for v=V..cost

        f[v]=max{f[v],f[v-cost]+weight}

注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N

    ZeroOnePack(c[i],w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求恰好装满背包时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0nothing“恰好装满其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞。如果背包并非必须被装满,那么任何容量的背包都有一个合法解什么都不装,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。



总结一下可以这样想:

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

(这是基础,要理解!)

这里是用二位数组存储的,可以把空间优化,用一位数组存储。

用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。

*这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

逆序!

这就是关键!

for (i=0;i<=N;i++)
   for (v=V;v>=0;v++)
        f[v]=max{f[v],f[v-c[i]]+w[i]};

分析上面的代码:当内循环是逆序时,就可以保证后一个f[v]和f[v-c[i]]+w[i]是前一状态的!
这里给大家一组测试数据:

测试数据:
10,3
3,4
4,5
5,6

f数组循环过程图:

(1)01背包问题____动态规划_第1张图片

c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.

从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.

下面是一种实现过程:(C语言描述)

#include<stdio.h>
int c[10][100];
int knapsack(int m,int n)
{
    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
    scanf("\n%d,%d",&w[i],&p[i]);
    for(i=0;i<10;i++)
    for(j=0;j<100;j++)
    c[i][j]=0;
    for(i=1;i<n+1;i++)
    for(j=1;j<m+1;j++)
    {
        if(w[i]<=j){
             if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
                 c[i][j]=p[i]+c[i-1][j-w[i]]; 
             else
                 c[i][j]=c[i-1][j];
        }else 
             c[i][j]=c[i-1][j];
     }
     return(c[n][m]);
}
int main()
{
    int m,n;int i,j;
    scanf("%d,%d",&m,&n);
    printf("%d",knapsack(m,n));
    printf("\n");
    for(i=0;i<10;i++)
        for(j=0;j<15;j++)
        {
             printf("%d ",c[i][j]);
             if(j==14)printf("\n");
        }
    return 0;
}

下面是思路的基本过程

问题的特点是:每种物品一件,可以选择放1或不放0。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,据说基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以详细的查了一下这个方程的含义:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

在有的地方看到的背包问题题目中,有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故仔细体会上面基本思路的得出方法,状态转移方程的意


举例一个题:

Description

Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
 

Input

The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the maximum of the total value (this number will be less than 231).
 

Sample Input

     
     
     
     
1
5 10
1 2 3 4 5
5 4 3 2 1

Sample Output

     
     
     
     
213 92 3

题目大概意思:

第一排输入一个整数T表示接下来有T组数据,对于每组数据 第一排输入N,V两个整数,表示有N件物品,和最多容纳V体积

第二排输入N个数分别表示N个物品的价值,第三排输入N个数分别表示N个物品的体积。

输出最多能容纳多少价值的物品。

样例代码:

// HDOJ 2602
#include <iostream>
using namespace std;
 
int main()
{
int nCases;
int nPack, nMaxVolume;
int weight[1002], value[1002];
int record[1002];
    //freopen("input.txt", "r", stdin);
    scanf("%d", &nCases);
    while(nCases--)
    {
        memset(record, 0, sizeof(record));
        scanf("%d %d", &nPack, &nMaxVolume);
        for(int i=0; i<nPack; ++i)
            scanf("%d", &value[i]);
        for(int i=0; i<nPack; ++i)
            scanf("%d", &weight[i]);
        for(int i=0; i<nPack; ++i)
            for(int j=nMaxVolume; j>=weight[i]; --j)
            {
                if(record[j-weight[i]]+value[i] > record[j])
                    record[j] = record[j-weight[i]]+value[i];
            }
        printf("%d\n", record[nMaxVolume]);
    }
    return 0;
}

分析:






你可能感兴趣的:(动态规划,01背包)