题目链接:uva 10806 - Dijkstra, Dijkstra.
题目大意:给出一个无向图,求出从1走到n,再从n走回1得最短路径,每条边只能走一次。
解题思路:无向图的费用流,建立起点s指向1,容量为2,费用为0,建立汇点n + 1,n指向汇点,容量为2,费用为0.然后对于每无向边,差分成两条有向边。然后就是费用流问题,若最大流为2,输出最小费用,否则无法到达。
以前都是用邻接图去储存关系,第一次做到无向图的费用流,不懂的怎么拆边,后来发现可以储存边的状态,这样即使两条边的起点和终点不一样,也是可以求的。
#include <stdio.h> #include <string.h> #include <queue> using namespace std; const int MAXN = 50000; const int INF = 1 << 30; const int N = 105; struct edge { int next, im; int far, son; int cap, flow; int cost; }s[MAXN]; int n, m, tmp, h[N]; void add(int x, int y, int c, int cost, int im) { s[tmp].next = h[x]; h[x] = tmp; s[tmp].im = tmp + im; s[tmp].far = x; s[tmp].son = y; s[tmp].cap = c; s[tmp].flow = 0; s[tmp].cost = cost; tmp++; } void init() { scanf("%d", &m); int a, b, c; tmp = 0; memset(h, -1, sizeof(h)); add(0, 1, 2, 0, 1); add(1, 0, 0, 0, -1); add(n, n + 1, 2, 0, 1); add(n + 1, n, 0, 0, -1); for (int i = 0; i < m; i++) { scanf("%d%d%d", &a, &b, &c); add(a, b, 1, c, 1); add(b, a, 0, -c, -1); add(b, a, 1, c, 1); add(a, b, 0, -c, -1); } } void solve() { queue<int> que; int ans = 0, f = 0; int u, d[N], vis[N], path[MAXN]; while (1) { for (int i = 0; i <= n + 1; i++) d[i] = (i == 0) ? 0 : INF; memset(path, -1, sizeof(path)); memset(vis, 0, sizeof(vis)); que.push(0); vis[0] = 1; while ( !que.empty() ) { u = que.front(), que.pop(); vis[u] = 0; for (int i = h[u]; i != -1; i = s[i].next) { int v = s[i].son; if ( s[i].cap > s[i].flow && d[v] > d[u] + s[i].cost) { d[v] = d[u] + s[i].cost; path[v] = i; if (vis[v] == 0) { que.push(v); vis[v] = 1; } } } } if (d[n + 1] == INF) break; int a = INF; for (int i = n + 1; i; i = s[path[i]].far) a = min(a, s[path[i]].cap - s[path[i]].flow); f += a; ans += a * d[n + 1]; for (int i = n + 1; i; i = s[path[i]].far) { s[path[i]].flow += a; int im = s[path[i]].im; s[im].flow -= a; } } if (f < 2) printf("Back to jail\n"); else printf("%d\n", ans); } int main () { while (scanf("%d", &n), n) { init(); solve(); } return 0; }