- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 植物百科: 羽扇豆(鲁冰花)
动植物百科
图片发自App羽扇豆介绍:别名:(花卉植物)多叶羽扇豆、鲁冰花拉丁学名:LupinusmicranthusGuss.植物科属:豆科、羽扇豆属图片发自App形态特征:一年生草本,高20-70厘米。茎上升或直立,基部分枝,全株被棕色或锈色硬毛。掌状复叶,小叶5-8枚;叶柄远长于小叶;托叶钻形,长达1厘米,下半部与叶柄连生;小叶倒卵形、倒披针形至匙形,长15-70毫米,宽5-15毫米,先端钝或锐尖,具短
- 【drools】文档2:起步 drools和dmn
等风来不如迎风去
网络服务入门与实战springdrools
GettingStartedDroolsUserGuide8.44.0.FinalGettingStartedFirstRuleProjectThisguidewalksyouthroughtheprocessofcreatingasimpleDroolsapplicationproject.PrerequisitesJDK11+withJAVA_HOMEconfiguredappropriate
- 老友记第四季(第20集)
小神2
婚纱剧情:乔伊打鼾吵得钱德勒睡不着,钱送乔去医院看病;罗斯要和艾米莉结婚吓坏瑞秋,瑞秋把乔书华约出来说两人还不够疯狂,逼婚乔书华;莫妮卡取艾米莉的婚纱时忍不住试穿一发不可收拾。1.snore:打鼾,鼾声Monica:Iusedtogooutwithathisguythatwasareallylightsleeper,andwheneverIstartedtosnore,hewouldjustrol
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 【早安心语】
壹典心理咨询
【2020-5-10】早安春夏秋冬Youmustknowthatthebeautyofapersonisnottheface,butallthepastexperiences.Eleganceisnotatraining,butakindofexperience.Indifferentisnotadisguise,butaaccumulation.PeoplewillneverOld,oldiso
- 智能化脚本autoit v3的简单了解
weixin_30617561
操作系统
AutoItv3是一个类似BASIC脚本语言的免费软件,它设计用于WindowsGUI(图形用户界面)中进行自动化操作.利用模拟键盘按键,鼠标移动和窗口/控件的操作实现自动化任务.而这是其它语言不可能做到或无可靠方法实现的(比如VBScript和SendKeys).AutoIt非常小巧,完全运行在所有windows操作系统上.并且不需要任何运行库!AutoIt最初是为PC(个人电脑)的"批量处理"
- 实变函数精解【13】
未来之蓝
基础数学与应用数学数学建模算法实变函数
文章目录集与点集基础勒贝格测度基础勒贝格外测度(Lebesgueoutermeasure)基础概念1.**勒贝格外测度的定义**2.**勒贝格外测度的基本性质**3.**勒贝格外测度与勒贝格测度**4.**计算例子**勒贝格外测度的例子例子1:单个区间的勒贝格外测度例子2:闭区间与单点集例题1:Cantor集的勒贝格外测度例题2:两个不相交区间的勒贝格外测度例题3:不可数集的勒贝格外测度外测度的性
- 数学知识——欧拉函数、快速幂、扩展欧几里得算法
up-to-star
acwing算法基础课学习笔记
欧拉函数欧拉函数定义为ϕ(n)=1−n中与n互质的个数\phi(n)=1-n中与n互质的个数ϕ(n)=1−n中与n互质的个数,互质就是最大公约数是1。欧拉函数求解公式:将n分解质因数:n=p1a1+p2a2+...+pkakn=p_1^{a1}+p_2^{a2}+...+p_k^{ak}n=p1a1+p2a2+...+pkak,则ϕ(n)=n∗(1−1p1)∗(1−1p2)∗.....∗(1−1p
- 双屏三摄+神秘圆环,钟文泽为vivo NEX 2爆料“一二三”!
笔点酷玩
顶级手机大佬席位不多,竞争者倒是越来越多,这种激烈的市场形势,逼得各品牌将重心从机海大战转到精品战略,谁能在差异化科技创新方面力拔头筹,谁就更容易笑到最后。很显然,2018年vivo拿到了主动权——上半年能与vivoNEX的创新科技力相提并论的大概只有OPPOFindX了。然而NEX的热度还未退去,年底新旗舰来袭,近日有关这部vivoNEX2的爆料越来越多,2天前Tom'sGuide更是撰文大呼R
- pywinauto 使用说明
qh0526wy
RPAPythonrpapython
pywinauto是一个Python库,它专门用于自动化MicrosoftWindowsGUI。以下是一些关于pywinauto的文档信息:模块简介:pywinauto允许用户将鼠标和键盘操作发送到Windows对话框和控件,支持更复杂的操作,如窗口管理和控件交互3133。安装:可以通过pip安装pywinauto,使用命令pipinstallpywinauto3338。手动安装:需要安装一些依赖
- 2021-07-19
rosalind
ThedisguiseofPortraitofanArtistDavidHockney,PortraitofanArtistPortraitofanartistisoneofthemostbelovedpaintingsofHockney,regardlessofthestruggleintheprocessofcreation.However,theexcellenceofthepainting
- 时政新闻学英语之44:广东海南高铁逐步恢复通行
小书童札记
本文选自Chinadaily,原文链接RailwaysinGuangdongandHainanresumeoperation。High-speedtrainsoperatinginsideSouthChina'sGuangdongprovinceresumedoperation(恢复运行)onMonday,includingBeijing-Guangzhouhigh-speedrailwayand
- A Silent Love
千叶集青
Fromtheverybeginning,thegirl’sfamilyobjectedstronglytoherdatingthisguy,sayingthatithadgottodowithfamilybackgroundandthatthegirlwouldhavetosufferfortherestofherlifeifsheweretobewithhim.从一开始,女孩的家人就强烈反对她
- angular 路由守卫 CanActivate和CanDeactivate
价值投机168
CanActivate路由进入新建守卫focusGuard.ts文件import{CanActivate}from'@angular/router';exportclassLoginGuardimplementsCanActivate{canActivate(){letloggedIn:boolean=Math.random(){canDeactivate(component:Routerguar
- vue3 + Babylon.js 实现3D场景
:mnong
vue.js
import{ref,getCurrentInstance,onMounted,beforeUnmount}from'vue'import*asBABYLONfrom'@babylonjs/core/Legacy/legacy'//全部引入import'@babylonjs/loaders'//模型加载loaderimport*asGUIfrom'@babylonjs/gui/2D'//交互组件c
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- 【07】processing-字体(中文)
一个兴趣使然的探索者
processing官方教程processing
排版CaseyReas和BenFry印刷复制和显示技术的发展已经并将继续影响人类文化。15世纪德国约翰内斯·古腾堡(JohannesGutenberg)利用铅铸字母开发的早期印刷技术为提高识字率和科学革命提供了催化剂。自动排版机,如19世纪发明的列印机,改变了信息的生产、分发和消费方式。在数字时代,自从上世纪80年代个人电脑的普及和90年代互联网的快速发展以来,我们的文本消费方式已经发生了巨大的变
- osg解析系列-对“地形”类场景子树进行射线求交、面求交,适用于大场景如数字地球等
爱丽J
c++图形渲染
note1:osgSim::LineOfSight、osgSim::HeightAboveTerrain均是用于计算与“地形”类场景子树进行射线求交的辅助类,是对osgUtil::LineSegmentIntersector、osgUtil::IntersectorGroup的封装和应用。note2:osgSim::ElevationSlice是用于计算与“地形”类场景子树进行面求交的辅助类,是对
- 【数论】exgcd 扩展欧几里得算法
Texcavator
数论算法
参考:exgcd详解-zzt1208-博客园(cnblogs.com)exgcd(扩展欧几里得算法),用来求形如ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)(a,ba,ba,b为常数)的方程的一组整数解。(如果不确定等号右边是不是gcd,可以先当做gcd,求出来之后验证,是的话就是解,不是的话就不是解)推导见上面的链接,这篇只放个板子codeintexgcd
- 备战蓝桥杯---数学基础3
cocoack
蓝桥杯算法数学c++
本专题主要围绕同余来讲:下面介绍一下基本概念与定理:下面给出解这方程的一个例子:下面是用代码实现扩展欧几里得算法:#includeusingnamespacestd;intgcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returna;}intd=gcd(b,a%b,y,x);y=y-b/a*x;returnd;}下面我们引进二元一次不定方程的通解:
- OpenIM (Open-Source Instant Messaging) Mac Deployment Guide
github
Thisguideprovidesstep-by-stepinstructionsfordeployingOpenIMonaMac,includingbothsourcecodeandDockerdeploymentmethods.PreliminaryEnvironmentSetupEnsureacleanworkingenvironment:CreateaNewDirectory:Starti
- 微服务指南
信码由缰
信码由缰DevOps微服务架构
【注】本文节译自:MicroservicesGuide(martinfowler.com)简而言之,微服务架构风格是一种将单个应用程序开发为一组小型服务的方法,每个小服务都在自己的进程中运行,并与轻量级机制(通常是HTTP资源API)进行通信。这些服务围绕业务功能构建,并且可以通过全自动部署机制独立部署。这些服务可以用不同的编程语言编写,使用不同的数据存储技术,只要进行最小化的集中管理。–詹姆斯·
- 2022-03-16 今日背词
JUNOSMZ
dieWörtederMorgenmorgenadv.machenvt.mitDderMutdieMeinungmeistensmüdeAdj.DerSportSkifahrenschwimmeneislaufentanzenlaufen,rennen,joggenwandernGutenMorgen!Bismorgen!Mach"sgut!IchspielemitdemKind.MeineMut
- 华硕游戏本 win11 安装 ubuntu 22.04.01 最新操作(含亲身体验)
AndZby
ubuntulinux嵌入式硬件
记录并总结一下这次安装最新ubuntu系统中碰到的问题。电脑是新买的华硕幻16,在官网更新了最新的biosGU603ZM-Support(asus.com)(biosandfirmware中),用的是930G的单ssd。安装中参照了许多文章与回答。(124条消息)Windows11安装Ubuntu20.04.3LTS双系统(详细过程)_Meruz的博客-CSDN博客_win11安装ubuntu(1
- 消除Intellij IDEA的Not annotated parameter overrides @NonNullApi parameter警告
沐雨橙风ιε
windows
这是一个Spring的转换器,在重写Converter的convert()方法时,idea给这个方法增加了警告提示Notannotatedparameteroverrides@NonNullApiparameterpackagecn.edu.sgu.www.mhxysy.converter;importcom.alibaba.fastjson.JSON;importorg.springframew
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 新概念英语第二册(58)
哆啦是个程序员
新概念英语考研
【Newwordsandexpressions】生词和短语(16)blessingn.福分,福气disguisen.伪装tinyadj.极小的possessv.拥有cursedadj.可恨的increasev.增加plantv.种植churchn.教堂eviladj.坏的reputationn.名声claimv.以……为其后果victimn.受害者,牺牲品vicarn.教区牧师sourcen.来源
- 【算法竞赛模板】质因子、质数、约数、余数、快速幂(数论大全)
Ac君
算法学习c++数论质数约数蓝桥杯
常用数论的算法模板一、质因子二、质数三、约数①试除法求一个数所有约数②求约数个数③求约数和④求最大公约数gcd辗转相除扩展欧几里得反素数同余定理费马小定理(快速幂求逆元)四、余数五、组合数①DP求组合数②逆元求组合数③卢卡斯定理求组合数④高精度大数求组合数六、快速幂 苟蒻发文,若有任何不足、错误的地方欢迎大佬们来斧正~本苟蒻不胜感激(>人<;)一、质因子 定义:指能整除给定正整数的质数 性质
- 《风格感觉:21世纪写作指南》 读书笔记
前端GoGoGo7
基础信息原作名:TheSenseofStyle:TheThinkingPerson’sGuidetoWritinginthe21stCentury出版社:机械工业出版社作者:[美]史蒂芬·平克译者:王烁/王佩/阳志平审校出版年:2018-5ISBN:9787111596158豆瓣主页该书中的写作指:非虚构写作,特别是那些看重清晰连贯的体裁。作者简介世界级语言学家,哈佛大学心理学教授,科普畅销书作家
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。