这道题与QTREE4类似
难度两者差不多 , 这个版本没有边权(但做过QTREE4的小伙伴都知道边权其实并不会增加难度) , 但是多了一些查找操作。
值得一说的:
对于线段树而言 , 我想大家比较习惯的方式是从上往下递归修改 , 所以这里(QTREE4也是)使用了一个 findPath() 的函数。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <deque>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
using namespace std;
const int maxn = 1e5+1e2;
const int INF = 0x3f3f3f3f;
struct node{ int l , r; node(int l = 0 , int r = 0):l(l),r(r){} };
int n , dfsCnt , cnt , cs;
int fa[maxn] , id[maxn] , reid[maxn] , bl[maxn] , Size[maxn] , s[maxn] , c[maxn];
vector<int> g[maxn];
void dfs(int u)
{
Size[u] = 1;
for(int i=0;i<g[u].size();i++)
{
int t = g[u][i];
if(t == fa[u]) continue;
fa[t] = u;
dfs(t);
Size[u] += Size[t];
}
}
void dfs(int u , int num)
{
reid[id[u] = ++dfsCnt] = u;
bl[u] = num;
s[num]++;
int mx = 0 , w;
for(int i=0;i<g[u].size();i++)
{
int t = g[u][i];
if(t == fa[u]) continue;
if(mx < Size[t]) mx = Size[t] , w = t;
}
if(mx) dfs(w, num);
for(int i=0;i<g[u].size();i++)
{
int t = g[u][i];
if(t == fa[u] || t == w) continue;
dfs(t, t);
}
}
node seg[maxn*4];
int ls[maxn*4] , rs[maxn*4] , root[maxn];
multiset<int> ch[maxn];
node merge(node& a , node& b , int l1 , int l2 , int l3)
{
node res;
res.l = min(a.l , l1+l2+b.l);
res.r = min(b.r , l2+l3+a.r);
return res;
}
void maintain(int o , int x)
{
int d1 = INF , d2 = INF; if(c[x]) d1 = d2 = 0;
if(ch[x].size()) d1 = min(d1 , *ch[x].begin());
if(ch[x].size()>1) d2 = min(d2 , *(++ch[x].begin()));
seg[o].l = seg[o].r = d1;
}
void build(int o , int l , int r)
{
if(l==r)
{
int x = reid[l];
for(int i=0;i<g[x].size();i++)
{
int t = g[x][i];
if(t == fa[x] || bl[t] == bl[x]) continue;
build(root[t] = ++cnt, id[t], id[t]+s[t]-1);
ch[x].insert(seg[root[t]].l+1);
}
maintain(o, x);
}
else
{
int mid = (l+r)/2;
build(ls[o] = ++cnt, l, mid);
build(rs[o] = ++cnt, mid+1, r);
seg[o] = merge(seg[ls[o]], seg[rs[o]], mid-l, 1, r-mid-1);
}
}
deque<int> pat;
void findPath(int x)
{
pat.clear();
int l = 0;
while(x)
{
int f = bl[x];
pat.push_front(l);
pat.push_front(x);
pat.push_front(f);
l += id[x] - id[f] + 1;
x = fa[f];
}
}
void modify(int o , int l , int r , int i)
{
if(l == r)
{
int x = reid[l];
if(i+3 < pat.size())
{
int ne = pat[i+2];
ch[x].erase(ch[x].find(seg[root[ne]].l+1));
modify(root[ne], id[ne], id[ne]+s[ne]-1, i+3);
ch[x].insert(seg[root[ne]].l+1);
}
maintain(o, x);
}
else
{
int mid = (l+r)/2;
if(id[pat[i]] <= mid) modify(ls[o], l, mid, i);
else modify(rs[o], mid+1, r, i);
seg[o] = merge(seg[ls[o]], seg[rs[o]], mid-l, 1, r-mid-1);
}
}
int query(int o , int l , int r , int i)
{
if(l==r)
{
int res = INF;
if(i+3<pat.size())
{
int ne = pat[i+2];
res = query(root[ne], id[ne], id[ne]+s[ne]-1, i+3);
}
res = min(res , seg[o].l+pat[i+1]);
return res;
}
else
{
int mid = (l+r)/2 , res;
if(id[pat[i]] <= mid) res = min(query(ls[o], l, mid, i) , mid+1-id[pat[i]]+seg[rs[o]].l+pat[i+1]);
else res = min(query(rs[o], mid+1, r, i) , seg[ls[o]].r+id[pat[i]]-mid+pat[i+1]);
return res;
}
}
int main(int argc, char *argv[]) {
cin>>n;
for(int i=1;i<n;i++)
{
int a ,b;
scanf("%d%d" , &a , &b);
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1);
dfs(1, 1);
build(root[1] = ++cnt, 1, s[1]);
int x , y , Q;
cin>>Q;
while(Q--)
{
scanf("%d%d" , &x , &y);
if(x)
{
if(!cs) { puts("-1"); continue; }
findPath(y);
printf("%d\n" , query(1, 1, s[1], 1));
}
else
{
cs += 1 - c[y]*2;
c[y] = 1-c[y];
findPath(y);
modify(1, 1, s[1], 1);
}
}
return 0;
}