codeforces 617E (莫队算法)

E. XOR and Favorite Number
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.

Input

The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 0000 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Examples
input
6 2 3
1 2 1 1 0 3
1 6
3 5
output
7
0
input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
output
9
4
4
Note

In the first sample the suitable pairs of i and j for the first query are: (12), (14), (15), (23), (36), (56), (66). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.


题意:求询问区间内有多少i,j满足a[i]^a[i+1]^...^a[j]=k.

本题可以再O(1)时间内由[l,r]的结果得到[l+1,r],[l-1,r],[l,r-1]以及[l,r+1]的结果,

所以可以用莫队算法.

主要就是add函数和delete函数,数字不是很大直接开一个数组存下来就好了.

#include <bits/stdc++.h>
using namespace std;
#define maxn 2111111

int pos[111111];
int n, m, k;
long long cnt[maxn], ans[111111];
struct node {
    int l, r, id;
    bool operator < (const node &a) const {
        return pos[l] < pos[a.l] || (pos[l] == pos[a.l] && r < a.r);
    }
}p[111111];
long long a[111111], cur;

void add (int pos) {
    cur += cnt[a[pos]^k];
    cnt[a[pos]]++;
}

void del (int pos) {
    cnt[a[pos]]--;
    cur -= cnt[a[pos]^k];
}

int main () {
    //freopen ("in.txt", "r", stdin);
    scanf ("%d%d%d", &n, &m, &k);
    for (int i = 1; i <= n; i++) {
        scanf ("%lld", &a[i]);
        if (i > 1) a[i] ^= a[i-1];
    }
    int block = ceil (sqrt (n*1.0));
    for (int i = 1; i <= n; i++) pos[i] = (i-1)/block;
    for (int i = 0; i < m; i++) {
        scanf ("%d%d", &p[i].l, &p[i].r);
        p[i].id = i;
    }
    sort (p, p+m);
    int l = 1, r = 0;
    cur = 0;
    memset (cnt, 0, sizeof cnt);
    cnt[0] = 1;
    for (int i = 0; i < m; i++) {
        while (r > p[i].r) {
            del (r);
            r--;
        }
        while (r < p[i].r) {
            r++;
            add (r);
        }
        while (l > p[i].l) {
            l--;
            add (l-1);
        }
        while (l < p[i].l) {
            del (l-1);
            l++;
        }
        ans[p[i].id] = cur;
    }
    for (int i = 0; i < m; i++) {
        printf ("%lld\n", ans[i]);
    }
    return 0;
}


你可能感兴趣的:(codeforces 617E (莫队算法))