Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3 1 2 1 1 0 3 1 6 3 5
7 0
5 3 1 1 1 1 1 1 1 5 2 4 1 3
9 4 4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:求询问区间内有多少i,j满足a[i]^a[i+1]^...^a[j]=k.
本题可以再O(1)时间内由[l,r]的结果得到[l+1,r],[l-1,r],[l,r-1]以及[l,r+1]的结果,
所以可以用莫队算法.
主要就是add函数和delete函数,数字不是很大直接开一个数组存下来就好了.
#include <bits/stdc++.h> using namespace std; #define maxn 2111111 int pos[111111]; int n, m, k; long long cnt[maxn], ans[111111]; struct node { int l, r, id; bool operator < (const node &a) const { return pos[l] < pos[a.l] || (pos[l] == pos[a.l] && r < a.r); } }p[111111]; long long a[111111], cur; void add (int pos) { cur += cnt[a[pos]^k]; cnt[a[pos]]++; } void del (int pos) { cnt[a[pos]]--; cur -= cnt[a[pos]^k]; } int main () { //freopen ("in.txt", "r", stdin); scanf ("%d%d%d", &n, &m, &k); for (int i = 1; i <= n; i++) { scanf ("%lld", &a[i]); if (i > 1) a[i] ^= a[i-1]; } int block = ceil (sqrt (n*1.0)); for (int i = 1; i <= n; i++) pos[i] = (i-1)/block; for (int i = 0; i < m; i++) { scanf ("%d%d", &p[i].l, &p[i].r); p[i].id = i; } sort (p, p+m); int l = 1, r = 0; cur = 0; memset (cnt, 0, sizeof cnt); cnt[0] = 1; for (int i = 0; i < m; i++) { while (r > p[i].r) { del (r); r--; } while (r < p[i].r) { r++; add (r); } while (l > p[i].l) { l--; add (l-1); } while (l < p[i].l) { del (l-1); l++; } ans[p[i].id] = cur; } for (int i = 0; i < m; i++) { printf ("%lld\n", ans[i]); } return 0; }