题目链接:http://codeforces.com/problemset/problem/380/C
Sereja has a bracket sequence s1, s2, ..., sn, or, in other words, a string s of length n, consisting of characters "(" and ")".
Sereja needs to answer m queries, each of them is described by two integers li, ri (1 ≤ li ≤ ri ≤ n). The answer to the i-th query is the length of the maximum correct bracket subsequence of sequence sli, sli + 1, ..., sri. Help Sereja answer all queries.
You can find the definitions for a subsequence and a correct bracket sequence in the notes.
The first line contains a sequence of characters s1, s2, ..., sn (1 ≤ n ≤ 106) without any spaces. Each character is either a "(" or a ")". The second line contains integer m (1 ≤ m ≤ 105) — the number of queries. Each of the next m lines contains a pair of integers. The i-th line contains integers li, ri (1 ≤ li ≤ ri ≤ n) — the description of the i-th query.
Print the answer to each question on a single line. Print the answers in the order they go in the input.
())(())(())( 7 1 1 2 3 1 2 1 12 8 12 5 11 2 10
0 0 2 10 4 6 6
A subsequence of length |x| of string s = s1s2... s|s| (where |s| is the length of string s) is string x = sk1sk2... sk|x|(1 ≤ k1 < k2 < ... < k|x| ≤ |s|).
A correct bracket sequence is a bracket sequence that can be transformed into a correct aryphmetic expression by inserting characters "1" and "+" between the characters of the string. For example, bracket sequences "()()", "(())" are correct (the resulting expressions "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
For the third query required sequence will be «()».
For the fourth query required sequence will be «()(())(())».
题意:
给出一个含‘ ( ’ ,‘ ) ' 的字符串,
然后给出一个询问区间,去这个区间里完整匹配的()的数目!一个()的答案为2!
PS:
我们可以用栈把每个’ ( ‘的下标存起来!然后再扫一遍’ )‘!用树状数组维护一下即可!
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <iostream> #include <stack> using namespace std; #define maxn 1000017 #define maxm 100017 using namespace std; struct node { int l, r; int id; } q[maxm]; char s[maxn]; int c[maxn]; int ans[maxm]; stack<int> st; int len; int Lowbit(int x) // 2^k { return x&(-x); } void update(int i, int x)//i点增量为x { while(i <= len) { c[i] += x; i += Lowbit(i); } } int sum(int x)//区间求和 [1,x] { int ans = 0; while(x) { ans += c[x]; x -= Lowbit(x); } return ans; } bool cmp(node a, node b) { return a.r < b.r; } int main() { int m; while(~scanf("%s",s)) { int pos = 1; memset(c, 0, sizeof(c)); while(!st.empty()) { st.pop(); } len = strlen(s); scanf("%d",&m); for(int i = 0; i < m; i++) { scanf("%d%d",&q[i].l,&q[i].r); q[i].id = i; } sort(q, q+m, cmp); for(int i = 0; i < m; i++) { for(int j = pos; j <= q[i].r; j++) { if(s[j-1] == '(') { st.push(j); } else if(s[j-1] == ')') { if(!st.empty()) { int tt = st.top(); update(tt, 2); st.pop(); } } } pos = q[i].r+1; ans[q[i].id] = sum(q[i].r) - sum(q[i].l-1); } for (int i = 0; i < m; i++) { printf("%d\n", ans[i]); } } return 0; } /* ())(())(())( 7 1 1 1 2 2 3 2 10 5 11 1 12 8 12 */