PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given n different objects, you want to take kof them. How many ways to can do it?
For example, say there are 4 items; you want to take 2 ofthem. So, you can do it 6 ways.
Take 1, 2
Take 1, 3
Take 1, 4
Take 2, 3
Take 2, 4
Take 3, 4
Input starts with an integer T (≤ 2000),denoting the number of test cases.
Each test case contains two integers n (1 ≤ n≤ 106), k (0 ≤ k ≤ n).
For each case, output the case number and the desired value.Since the result can be very large, you have to print the result modulo 1000003.
Sample Input |
Output for Sample Input |
3 4 2 5 0 6 4 |
Case 1: 6 Case 2: 1 Case 3: 15 |
题意:看样例就能看出题意了,C(n,m)%1000003
思路:1000003是素数,符合Lucas定理
ac代码:
#include<stdio.h> #include<math.h> #include<string.h> #include<stack> #include<set> #include<queue> #include<vector> #include<iostream> #include<algorithm> #define MAXN 1010000 #define LL long long #define ll __int64 #define INF 0xfffffff #define mem(x) memset(x,0,sizeof(x)) #define PI acos(-1) using namespace std; LL gcd(LL a,LL b){return b?gcd(b,a%b):a;} LL lcm(LL a,LL b){return a/gcd(a,b)*b;} LL powmod(LL a,LL b,LL MOD){LL ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} //head LL f[MAXN]; void findinit(LL p) { f[0]=1; for(int i=1;i<=p;i++) f[i]=(f[i-1]*i)%p; } LL lucas(LL n,LL m,LL p) { LL ans=1; while(n&&m) { LL a=n%p,b=m%p; if(a<b) return 0; ans=(ans*f[a]*powmod(f[b]*f[a-b]%p,p-2,p))%p; n/=p;m/=p; } return ans; } int main() { findinit(1000003); LL n,m; int t,cas=0; scanf("%d",&t); while(t--) { scanf("%lld%lld",&n,&m); LL ans=lucas(n,m,1000003); printf("Case %d: ",++cas); printf("%lld\n",ans); } return 0; }