- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 06 逆矩阵、列空间与零空间
林炒Lynn
06逆矩阵、列空间与零空间imageimage直观理解这几个概念,计算方法不作讨论,如"Gaussianelimination高斯消元法"和"rowechelonform行阶梯型".Letthecomputerdocomputing!Usefulnessofmatrices矩阵的用途计算机图形学机器人学被广泛应用的一个主要原因就是它能帮助我们求解特定的systemofequations方程组大部分
- 蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
- 计算机是怎么求解线性方程的(矩阵乘和求逆)
異轩
上回我们说到,高斯老哥用消元法解线性方程,大致步骤呢就是给系数矩阵消元,运气好点呢直接整出上三角系数矩阵,得到方程组的唯一解,运气不行呢,消着消着发现整不出上三角,这时就得再讨论方程是有多解还是无解。这里所说的"运气"呢其实可以根据行列式啊,Ax=0是否有解啊判断得到,具体操作可以看看我聊消元法的那一篇文章。但是,高斯消元法存在一个问题,就是它是给人做的,比如给第一行乘个倍数加到另一行,或者将矩阵
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- MIT_线性代数笔记:线性代数常用概念及术语总结
浊酒南街
MIT_线性代数笔记线性代数笔记
目录1.系数矩阵2.高斯消元法3.置换矩阵Permutation4.逆矩阵Inverse5.高斯-若尔当消元法6.矩阵的LU分解7.三角矩阵1.系数矩阵线性代数的基本问题就是解n元一次方程组。例如:二元一次方程组2x−y=0−x+2y=3\begin{align*}&2x-y=0\\&-x+2y=3\end{align*}2x−y=0−x+2y=3写成矩阵形式就是:[2−1−12][xy]=[03
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 第九周学习报告(1.15-1.21)
三冬四夏会不会有点漫长
#算法训练周报学习
知识点,比赛和做题情况知识点终于把acwing的算法基础课全部看完了(是一些简单的算法模板)比赛无做题情况1.CF写了一个教育场次的A题TrickySum(等差数列求和,循环)2.acwing900.(dp的一个模板题)883,884(高斯消元的模板题)885,886,887,888,889(组合数的模板题)890(容斥原理模板题)891,892,893,894(博弈论模板题)894,338,29
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- c语言求逆矩阵-高斯消元法
不会C语言的男孩
c语言矩阵开发语言
/***A表示输入的矩阵*B表示输出的逆矩阵*n表示秩的大小*/voidGauss(doubleA[][N],doubleB[][N],intn)//这里的n指的是n*n的方阵中的n{inti,j,k;doublemax,temp;doublet[N][N];//临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i=0;ifabs(max)){max=t[j][i];k=j;}}//如果主
- 并行程序设计实验——高斯消元
NK.MainJay
c语言
并行程序设计实验——高斯消元一、问题描述熟悉高斯消元法解线性方程组的过程,然后实现SSE算法编程。过程中,自行构造合适的线性方程组,并选取至少2个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:①相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;②消元过程中采用向量编程的的性能提升情况如何;③回代过程可否向量化,有的话性能提升情况如何;④数据对齐与不对齐对计算性能有
- 二维泊松方程求解-SIP-最速下降法-共轭梯度
CFD_Tyro
1.直接解法:LU分解在前面的内容中曾经提到,使用有限差分或有限体积法通过隐式离散得到的求解形式,其中为系数矩阵。在一定条件下,能够通过因式分解为,其中为下三角矩阵,为上三角矩阵。这样的分解方式在高斯消元中十分有用,对的求解可分为以下两步2.迭代法:incompleteLUdecomposition如果存在一个与近似的矩阵,对做LU分解,我们把这样的步骤称为的不完全LU分解,ILU,即其中为小量。
- HDU-5955 Guessing the Dice Roll(AC自动机、高斯消元)
上总介
文章目录原题链接题意思路推导代码原题链接GuessingtheDiceRoll题意给定N(1≤N≤10)N(1\leqN\leq10)N(1≤N≤10)个长度都为L(1≤L≤10)L(1\leqL\leq10)L(1≤L≤10)的数字序列Ti(1≤i≤10)T_i(1\leqi\leq10)Ti(1≤i≤10),数字序列仅由{1,2,3,4,5,6}\left\{1,2,3,4,5,6\right
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- C#,数值计算,高斯消元法与列主元消元法的源代码及数据动态可视化
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipesc#算法高斯消元法线性代数
高斯消元法!一、高斯消元法GaussianElimination高斯消元法(或译:高斯消去法),是线性代数中的一个常用算法,常用于求解线性方程组和矩阵的逆。本程序的运行效果:1、高斯消元法的动画演示2、高斯列主元消元法的动画演示列主元素消去法是为控制舍入误差而提出来的一种算法,列主元素消去法计算基本上能控制舍入误差的影响,其基本思想是:在进行第k(k=1,2,...,n-1)步消元时,从第k列的a
- 【数值分析】高斯消元法,matlab实现
你哥同学
数值分析matlab线性代数高斯消元法列主元高斯消元法数值分析
高斯消元法An×nx=bA_{n\timesn}x=bAn×nx=b步骤:1.列出增广矩阵Z=[A∣b]2.迭代 , j=1,2,⋯ ,nZ第i行的每个元素乘以Zi−1,jZi,j , i=j+1,j+2,⋯ ,nZ第i行减去第j行 , 消元3.回代xi=bi−∑j=i+1nxj⋅Ai,jAi,i , i=n,n−1,⋯ ,1\begin{align*}1.&列出增广矩阵Z=[A|
- c++ 高斯消元算法实现
ldxxxxll
算法c++开发语言
c++有回代消元和无回代消元的算法在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?高斯消元即是用矩阵求解方程组的方法如下是高斯消元的c++代码,包含求解步骤的注释,看代码和注释更直观:/*使用方法constintN=4
- c++高斯消元法——简单高效求解线性方程组
yzc_qiuse
c++c++开发语言
c++高斯消元法——简单高效求解线性方程组1.概念引入1.1线性方程组1.2线性方程组和矩阵1.3无穷解、无解的情况1.3.1一元线性方程1.3.2nnn元线性方程组1.4高斯消元法2.例题精讲2.1【模板】高斯消元法2.1题目分析2.2.2代码2.2.3AC图片3.结语1.概念引入求解线性方程组在实际问题中具有广泛的应用。它可用于建立物理、工程、经济等领域的数学模型,并通过求解方程组来得到问题的
- 矩阵求逆(C语言)
kk.copt
C语言简单函数c语言算法线性代数矩阵
高斯消元法求逆对于任意一个矩阵Anxn,其满足。基于此,高斯消元法具体步骤是先构造一个增广矩阵W=[A|E],则W为一个nx2n的矩阵。我们需要对矩阵W进行矩阵行之间的变换,将其变为[E|B]的形势,如果能够成功变换,则B就为A矩阵的逆矩阵。具体操作过程如下:(1)将初始矩阵A右半部分进行扩增,得到矩阵W=[A|E],W为nx2n。(2)将首行作为基准,从上往下做行变换,将W前半部分转化为一个上三
- 高斯消元法——matlab实现
圆sir
笔记matlab开发语言
目录基本原理实验部分主要代码部分代码解析运行结果个人心得基本原理1.构造增广矩阵:将线性方程组的系数矩阵和常数向量合并成一个增广矩阵。2.选取主元:从第一列开始,找到当前列中绝对值最大的元素,将其作为主元素。3.行交换:交换包含主元素的行与当前处理的行,确保主元素在当前处理行的位置上。4.主元归一化:将主元所在的行除以主元素的值,使主元素变为1。5.消元操作:使用主元所在行的倍数,将当前处理行下方
- 数值分析总结
互联网的猫
算法其他
数值分析总结思维导图Docs相关代码的使用和注释列主元Gauss消元法%%列主元高斯消元法functionx=Gauss_lzy(A,b)%A为方程组系数矩阵,b为方程组的右侧向量,x为方程组的解[n,m]=size(A);%%得到矩阵A的行和列的宽度nb=length(b);%%方程组右侧向量的长度ifn~=m%%如果系数矩阵的行数和方程组右侧向量的长度不相等,错误error('%系数矩阵必须是
- matlab高斯差分,高斯变异算子matlab
weixin_39643255
matlab高斯差分
高斯消元法MATLAB实现_数学_自然科学_专业资料。.《数值分析》实验报告一、实验目的与要求1.掌握高斯消去法的基本思路和迭代步骤;2.培养编程与上机调试能力......(完整word版)高斯平滑滤波器(含matlab代码)_数学_自然科学_专业资料。GaussianSmoothingFilter高斯平滑滤波器一、图像滤波的基本概念图像常常被强度随机信号(也称......变异算子_数学_自然科学
- AcWing算法基础课----数学知识(三) 笔记 ( 高斯消元 + 求组合数 )
彡倾灬染|
算法学习笔记AcWingc++c语言
数学知识高斯消元O(n^3)求组合数1.递归法求组合数2.Lucas定理3.分解质因数法求组合数卡特兰数高斯消元O(n^3)解方程:无解\无穷多解\有唯一解利用线性代数初等行列变换1.把某一行乘一个非零的数2.交换某两行3.把某行若干倍加到另一行上去变换之后结果与解的关系:1.完美阶梯型唯一解2.不完美阶梯型0=非零无解3.不完美阶梯型0=0无穷解浮点数判断是否为零需要和eps比算法步骤:枚举每一
- 算法基础课—数学知识(四)高斯消元、组合数
肥肥饼
算法基础课算法数据结构
算法基础课—数学知识(四)高斯消元、组合数高斯消元——解方程组对于有解和无解的判断例子消元回代有无穷多个解的情况无解的情况算法思路题目代码模板自己的代码求组合数方法一模板自己的代码方法二题目模板代码方法三题目模板代码方法四题目模板自己的代码满足条件的01序列题目卡特兰数模板代码高斯消元——解方程组应用:在n的三次方时间内可以解n个方程组的解方法:矩阵的行列变换思想:先消元,再回代最后可以把矩阵变成
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h