E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
吴恩达深度学习课程编程作业
吴恩达
深度学习笔记(15)-浅层神经网络之神经网络概述
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
极客Array
·
2024-02-03 08:27
Coursera
吴恩达
《神经网络和深度学习》课程笔记(3)
转载自http://blog.csdn.net/koala_tree/article/details/78059952神经网络和深度学习—浅层神经网络1.神经网络表示简单神经网络示意图:神经网络基本的结构和符号可以从上面的图中看出,这里不再复述。主要需要注意的一点,是层与层之间参数矩阵的规格大小:输入层和隐藏层之间w[1]−>(4,3):前面的4是隐层神经元的个数,后面的3是输入层神经元的个数;b
遇见更好的自己
·
2024-02-03 06:05
深度学习
深度学习
神经网络
Coursera
吴恩达
机器学习课程笔记——神经网络: 学习(Neural Networks: Learning)
9神经网络:学习(NeuralNetworks:Learning)9.1代价函数(CostFunction)神经网络的分类问题有两种:二元分类问题(0/1分类)只有一个输出单元(K=1K=1K=1)多元(KKK)分类问题输出单元不止一个(K>1K\gt1K>1)神经网络的代价函数公式:hΘ(x)=a(L)=g(Θ(L−1)a(L−1))=g(z(L))h_\Theta(x)=a^{(L)}=g(\
yanglamei1962
·
2024-02-03 06:04
机器学习
笔记
神经网络
吴恩达
coursera机器学习个人向笔记——9章神经网络学习
文章目录课时62非线性假设09:36课时63神经元与大脑07:47课时64模型展示Ⅰ12:01课时65模型展示Ⅱ11:46课时68例子与直觉理解Ⅰ07:15课时70例子与直觉理解Ⅱ10:20课时71多元分类03:51课时62非线性假设09:36对图1那样的作分类,逻辑斯蒂回归中,只要g(θ转X)中的(高次)项足够多,就一定能找出边界但这是2个特征的情况如果有100个特征,二次交叉项会将近5000个
选西瓜专业户
·
2024-02-03 06:31
吴恩达机器学习
吴恩达机器学习
神经网络和深度学习
吴恩达
coursera笔记
DeepLearning文章目录DeepLearningBasicLogisticRegressionsomesignLossfunctioncostfunctionGradientDescentComputationGraphaVectorizationvectorizedImplementing:broadcastingShallowNeuralNetworkRepresentationcom
stoAir
·
2024-02-03 06:52
深度学习
神经网络
笔记
【
吴恩达
深度学习】— 参数、超参数、正则化
32.jpg1.参数VS超参数1.1什么是超参数(Hyperparameters)?比如算法中的learningrate(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、(隐藏层单元数目)、choiceofactivationfunction(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。实际上深度学习有很多不同的超参数,
Sunflow007
·
2024-02-02 13:58
吴恩达
机器学习笔记十二 Sigmoid激活函数的替代方案 激活函数的选择 为什么要使用激活函数
在需求预测案例中,awareness这个输入可能不是二元(binary)的,或许是一点(alittlebit)、有些(somewhat)或完全(extremely),此时相比将awareness规定为0、1,不如考虑概率,认为它是一个0-1之间的数。激活函数可以采用ReLU函数(rectifiedlinearunit)三个常用的激活函数使用线性激活函数也可以看作是没有激活函数。激活函数的选择输出层
爱学习的小仙女!
·
2024-02-02 08:52
机器学习
机器学习
人工智能
吴恩达
机器学习笔记十 神经网络 TensorFlow 人工智能
神经网络:说几层的时候是指隐藏层及输出层,不包含输入层。例如下图是一个四层神经网络。前向传播(forwardpropagation)越靠近输出层,该层的神经元数量越少TensorFlow(张量流)实现神经网络的搭建sequential()把两层顺序连接起来;如果有新的x,用predict()人工智能
爱学习的小仙女!
·
2024-02-02 08:22
机器学习
神经网络
人工智能
深度学习
机器学习基础2
提示:MachneLearning机器学习
吴恩达
目录一、JupyterNotebooks(数据分析神器)二、回归模型(线性回归)三、分类模型(离散)四、术语一、JupyterNotebooks(数据分析神器
qingxi_ran
·
2024-02-01 13:42
机器学习
人工智能
【计算机视觉】万字长文详解:卷积神经网络
计算机视觉概述如果输入层和隐藏层和之前一样都是采用全连接网络,参数过多会导致过拟合问题,其次这么多的参数存储下来对计算机的内存要求也是很高的解决这一问题,就需要用到——卷积神经网络这是一种理解卷积的角度(至少在
吴恩达
老师这个教学视频中是
Yaoyao2024
·
2024-02-01 09:50
cnn
计算机视觉
人工智能
吴恩达
机器学习- 正则化
过拟合和欠拟合定义和形态解决方法减少特征值数量正则化正则化惩罚θ系数线性回归正则化逻辑回归正则化
YANWeichuan
·
2024-02-01 03:40
吴恩达
改善深层神经网络:超参数调试、正则化以及优化
第一步理解数据划分对于一个需要解决的问题的样本数据,在建立模型的过程中,数据会被划分为以下几个部分:训练集(trainset):用训练集对算法或模型进行训练过程;验证集(developmentset):利用验证集(又称为简单交叉验证集,hold-outcrossvalidationset)进行交叉验证,选择出最好的模型;测试集(testset):最后利用测试集对模型进行测试,获取模型运行的无偏估计
西部小笼包
·
2024-01-31 23:33
最强机器学习入门博客(
吴恩达
机器学习课程总结)
机器学习的概述诞生现实生活许多领域的问题不能通过显式编程实现,比如制造自动驾驶汽车、智能工厂、规模农业、计算机视觉等等,一种好的实现方式是通过学习算法让计算机自己学习如何做。现在现在是学习机器学习最好的时机,因为机器学习在未来能产生巨大的价值未来机器学习在软件领域方面取得了巨大的价值,比如智能推荐,网络搜索,图像识别等机器学习在许多其他的领域仍有巨大的价值,比如未来在自动驾驶汽车,工厂,农业,医疗
PengHao666999
·
2024-01-30 23:32
机器学习
人工智能
机器学习笔记(1) 逻辑回归
逻辑回归与之后的神经网络有着千丝万缕的联系,经常被用来当神经元激活算法讲,所以
吴恩达
教授的deeplearning也是从逻辑回归开始入手,其重要性不容小觑。
TheStudent_LifeLong
·
2024-01-29 09:01
机器学习笔记
机器学习
笔记
逻辑回归
【
吴恩达
-神经网络与深度学习】第3周:浅层神经网络
目录神经网络概览神经网络表示含有一个隐藏层的神经网络(双层神经网络)计算神经网络的输出多样本的向量化向量化实现的解释激活函数(Activationfunctions)一些选择激活函数的经验法则:为什么需要非线性激活函数?激活函数的导数神经网络的梯度下降法(选修)直观理解反向传播随机初始化神经网络概览右上角方括号[]里面的数字表示神经网络的层数可以把许多sigmoid单元堆叠起来形成一个神经网络:第
倏然希然_
·
2024-01-29 08:48
深度学习与神经网络
神经网络
深度学习
人工智能
交并比(Intersection over union)
来源:Coursera
吴恩达
深度学习课程
如何判断目标检测算法运作良好呢?接下来,你将了解到并交比(intersectionoverunion)函数,可以用来评价目标检测算法。
双木的木
·
2024-01-27 20:33
吴恩达深度学习笔记
深度学习知识点储备
笔记
算法
机器学习
python
深度学习
计算机视觉
Coursera
吴恩达
《深度学习》课程总结(全)
这里有Coursera
吴恩达
《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈
双木的木
·
2024-01-27 20:03
吴恩达深度学习笔记
AI
笔记
深度学习
神经网络
人工智能
python
【
吴恩达
·机器学习】第一章:机器学习绪论:监督学习和非监督学习
——《朗读者》0、声明本系列博客文章是博主本人根据
吴恩达
老
是瑶瑶子啦
·
2024-01-27 20:10
机器学习
学习
人工智能
监督学习
非监督学习
Python
编程作业
二:组合数据类型
目录一、列表基本操作二、字符串基本操作三、字典基本操作四、回文数判断五、按职业统计就业人数六、计算平均分一、列表基本操作对于列表all_list1=[1,'word',{'like':'pythom'},True,[1,2]],请按顺序完成如下操作:(1)得到该列表的倒数第2个元素(2)使用切片同时得到该列表的第1、3、5个元素(3)以逆序方式输出该列表的各元素,同时要求不得改变原始对象(4)修改
Francek Chen
·
2024-01-27 16:10
Python编程基础
python
开发语言
Python编程作业
数据结构
Course1神经网络和深度学习
编程作业
第三周-带有一个隐藏层的平面数据分类建立一个神经网络,带有一个隐藏层。用到的知识:构建具有单隐藏层的2类分类神经网络。使用具有非线性激活功能激活函数,例如tanh。计算交叉熵损失(损失函数)。实现向前和向后传播。numpy:是用Python进行科学计算的基本软件包。sklearn:为数据挖掘和数据分析提供的简单高效的工具。matplotlib:是一个用于在Python中绘制图表的库。testCas
毛十三_
·
2024-01-26 11:03
吴恩达
卷积神经网络学习笔记(六)|CSDN创作打卡
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
墨倾许
·
2024-01-25 22:56
深度学习
神经网络
计算机视觉
吴恩达
卷积神经网络学习笔记(二)
一.卷积神经网络(一)1.6三维卷积3指的是颜色通道(RGB)6*6*3分别对应宽*高*通道的数目滤波器也有相对应的3*3*3,由此得到一个4*4的输出。对三维图像进行卷积时,卷积核的通道数要与三维图像的通道数相等。当我们想对图像的多个边缘特征进行检测时,我们可以使用多个卷积核,这样卷积后生成图像的通道数为使用的卷积核的个数。对于三维卷积具体运算的实例如下:如果使用的是下图3*3*3的卷积核,则一
墨倾许
·
2024-01-25 22:26
cnn
深度学习
机器学习
吴恩达
深度学习笔记(82)-深度卷积神经网络的发展史
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
极客Array
·
2024-01-25 12:33
在学习
吴恩达
机器学习课程中遇到的一些问题
C1_W1_Lab04_Cost_function_Soln中遇到的一些问题1、importnumpyasnp%matplotlibnotebookimportmatplotlib.pyplotaspltfromlab_utils_uniimportplt_intuition,plt_stationary,plt_update_onclick,soup_bowlplt.style.use('./d
ttyykx
·
2024-01-25 04:51
学习
机器学习
jupyter
吴恩达
chatgpt学习
吴恩达
chatgpt学习1、技术文档常用英文词汇2、指南策略1编写明确和具体的指令1.1使用分割符号如:1.2结构化输出1.3检查1.4少量训练提示few-shotprompting策略2给模型思考的时间
宣泠之
·
2024-01-24 23:38
chatgpt
学习
人工智能
吴恩达
机器学习Coursera-week11
PhotoOCR在此章的课程中,Andrew主要是想通过OCR问题的解决来阐释在实际项目中我们应该如何定义问题,并将一个大问题分解为多个小问题,并通过pipeline的方式将对这些小问题的解决方案串联起来,从而解决这个大问题。我认为这是解决实际问题的一个经典的方法论,有助于我们在实际工作和生活中更好地思考问题,分解问题,并最终解决问题。ProblemDescriptionandPipeline此小
geekpy
·
2024-01-24 20:23
吴恩达
机器学习介绍第一章介绍
1.机器学习的概念在进行特定编程的情况下,给予计算机学习的能力。机器学习是一种人工智能的分支,它关注如何通过计算机算法和模型来使计算机系统从数据中学习和改进。机器学习的目标是让计算机系统能够自动分析和理解数据,并根据数据的模式和规律做出预测和决策,而无需明确的编程指令。机器学习可以分为监督学习、无监督学习和强化学习三种类型。在监督学习中,计算机系统通过使用带有标签的训练数据来学习模式和规律,然后根
清☆茶
·
2024-01-24 08:30
机器学习
人工智能
吴恩达
【深度学习】笔记03——深层神经网络(Deep Neural Networks)
文章目录一、深层神经网络(DeepL-layerneuralnetwork)二、前向传播和反向传播(Forwardandbackwardpropagation)1.Forwardpropagation2.Backwardpropagation3.Buildingblocksofdeepneuralnetworks三、核对矩阵的维数(Gettingyourmatrixdimensionsright)
无糖馥芮白
·
2024-01-24 08:57
DeepLearning
神经网络
深度学习
解读顺网算力与AI,破局AIGC落地“最后一公里”
全球知名AI科学家
吴恩达
和李飞飞在CES2024上预测,2024年将是AI技术继续深化的一年,将成为下一次数字或工业革命真正的变革性驱动力。
阿川2015
·
2024-01-24 07:33
人工智能
AIGC
福建男孩陈麒润:我发现编程真的很好玩!|小码故事
发现他,是因为在小码世界果果老师的微信群里,他每次都主动上交
编程作业
,并详细地讲解自己的设计思路。果果老师说,他的每一份编程作品都有自
小码王在线
·
2024-01-22 05:20
吴恩达
-深度学习入门-第二周课后测验题
前情须知1、本文参考CSDN博主何宽老师的文章,仅用于个人学习使用,将答案部分单独摘出放在最后,方便进行自我检测。参考文章链接:https://blog.csdn.net/u013733326/article/details/798658582、第二周分为测验题和编程题两部分目录前情须知一、中文题目二、英文题目三、答案一、中文题目1、神经元节点计算什么?【 】神经元节点先计算激活函数,再计算线性函
?LAST
·
2024-01-22 03:55
吴恩达深度学习入门
深度学习
人工智能
吴恩达
-深度学习入门-第一周课后测验题
一、文章简介本篇文章主要内容为第一周课程结束后的十几道测试题,在其他大佬的文章中看到题目后,感觉因为有答案所以不太利于自己的思考,所以进行一下简单的编辑工作,将答案放在文章最后。文章参考:https://blog.csdn.net/u013733326/article/details/79862336仅做学习使用。二、题目题目分为中文版和英文版,根据自己喜好选择观看即可。英文版:Week1Quiz
?LAST
·
2024-01-22 03:25
吴恩达深度学习入门
深度学习
人工智能
【Andrew Ng机器学习】单变量线性回归-梯度下降
课程:
吴恩达
机器学习此篇我们将学习梯度下降算法,我们之前已经定义了代价函数J,梯度下降法可以将代价函数J最小化。梯度下降是很常用的算法,他不仅被用在线性回归上,还被广泛应用与机器学习的众多领域。
jenye_
·
2024-01-21 22:01
Improving Deep Neural Network学习笔记
参数调整、正则化、优化1超参数2方差、偏差3正则化4归一化输入5Mini-batch梯度下降算法6Adam优化算法本周学习了深度学习(
吴恩达
老师的课程)中,提升深度神经网络的一些方法,包括超参数的调整、
佳雨初林
·
2024-01-21 17:42
深度学习
学习
笔记
深度学习
第八章 正则化
该系列文章为,观看“
吴恩达
机器学习”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。
tomas家的小拨浪鼓
·
2024-01-21 10:15
代做Applied Image & Signal Processing 作业帮做、代写Digital Signal Processing实验、IIR filter
编程作业
帮做
DigitalSignalProcessing2LabcourseSummerTermAppliedImage&SignalProcessingAssignment–IIRfilter1.IIRFiltering▪RevisethetheoreticalprinciplesofIIRfiltering.▪CreateanIIRfiltertoextractthebackgroundnoisefro
junmuhao
·
2024-01-21 02:38
机器学习第十八周周报
机器学习第十八周周报摘要Abstract一、导数二、计算图三、使用计算图求导数四、逻辑回归中的梯度下降五、m个样本的梯度下降六、总结摘要本周开始学习
吴恩达
的梯度下降法,梯度下降法在机器学习中常常用来优化损失函数
JerryC1999
·
2024-01-20 22:17
机器学习
人工智能
ChatGPT提示词保姆级教程
教程
吴恩达
联合OpenAI出ChatGPT提示词教程课程涵盖从理论到应用的各个方面,包括大型语言模型、文本嵌入、强化学习等技术的应用。
Dlimeng聊AI
·
2024-01-20 21:32
gpt
chatgpt
人工智能
2022-12-14科研日志
今天主要学习了
吴恩达
机器学习的网课,又复习了一下机器学习;然后看了看VIO相关资料论文,今天看了几篇知网上搜到的关于VIO的硕士博士毕业论文和一篇20年的VIO综述,这方面的论文对于一个领域一般都有比较全面的描述
独孤西
·
2024-01-20 21:17
机器学习周刊第六期:哈佛大学机器学习课、Chatbot Ul 2.0 、LangChain v0.1.0、Mixtral 8x7B
—date:2024/01/08—
吴恩达
和Langchain合作开发了JavaScript生成式AI短期课程:《使用LangChain.js构建LLM应用程序》大家好,欢迎收看第六期机器学习周刊本期介绍
机器学习算法与Python实战
·
2024-01-20 04:31
机器学习
langchain
人工智能
C语言(C&C++程序设计基础, 电子科技大学MOOC)
一、
编程作业
1、在屏幕上输出“hello!welcometocomputerworld!”提示:注意所有符号都是英文,最后没有回车。
金色的省略号
·
2024-01-19 18:46
C
C++
c语言
c++
开发语言
零基础“机器学习“自学笔记|Note8:正则化
本系列以
吴恩达
老师的【“机器学习”课程】为纲,辅以黄海广老师的【斯坦福大学2014机器学习教程个人笔记(V5.51)】,中间会穿插相关数理知识。
木舟笔记
·
2024-01-19 12:14
编程作业
集第三部分
Demo61指定等级题目描述读入学生成绩,获取最高分best,然后根据下面的规则赋等级值:(1)如果分数≥best-10,等级为A(1)如果分数≥best-20,等级为B(1)如果分数≥best-30,等级为C(1)如果分数≥best-40,等级为D(1)其他情况,等级为F输入输出描述输入两行,第一行输入学生人数n,第二行输入n个学生的成绩输入n行,表示每个学生的成绩等级示例输入:44055705
~
·
2024-01-19 10:58
算法
python
Ulord优得社区第一期深度学习心得(第一课)
作为Ulord优得社区第一期
深度学习课程
,优得学院开启了传播区块链知识之旅,Ulord这个重磅公链,也会逐渐被大家熟知,对Ulord的深入了解,就从这次课程开始吧。
快乐小马哥
·
2024-01-19 10:20
李飞飞、
吴恩达
对谈:这一次,AI 冬天不会到来
在正在进行的CES2024(国际消费电子展)上,著名的AI科学家
吴恩达
和李飞飞出席了「伟大的思想,大胆的愿景」环节的小组讨论,就「人工智能的下一步是什么?」进行了40分钟的对谈。
Datawhale
·
2024-01-19 09:33
人工智能
零基础"机器学习"自学笔记|Note3:梯度下降法
本系列以
吴恩达
老师的【“机器学习”课程】为纲,辅以黄海广老师的【斯坦福大学2014机器学习教程个人笔记(V5.51)】,中间会穿插相关数理知识。
木舟笔记
·
2024-01-18 20:40
吴恩达
机器学习笔记-Logistic回归模型
回归函数在逻辑回归模型中我们不能再像之前的线性回归一样使用相同的代价函数,否则会使得输出的结果图像呈现波浪状,也就是说不再是个凸函数。代价函数的表达式之前有表示过,这里我们把1/2放到求和里面来。这里的求和部分我们可以表示为:很显然,如果我们把在之前说过的分类问题的假设函数带进去,即,得到的结果可能就是上述所说的不断起伏的状况。如果这里使用梯度下降法,不能保证能得到全局收敛的值,这个函数就是所谓的
Carey_Wu
·
2024-01-18 16:26
吴恩达
倾情推荐!28张图全解深度学习知识!
吴恩达
在推特上展示了一份由TessFerrandez完成的深度学习专项课程图,这套信息图优美地记录了
深度学习课程
的知识与亮点。
深度学习算法与自然语言处理
·
2024-01-18 15:55
NLP与大模型
机器学习
深度学习
人工智能
自然语言处理
机器学习
吴恩达
深度学习课程
作业--C1W2
1.3-Reshapingarraysv=v.reshape((v.shape[0]*v.shape[1],v.shape[2]))#v.shape[0]=a;v.shape[1]=b;v.shape[2]=c
HELLOTREE1
·
2024-01-18 10:09
ML:2-1-5 matrix multiplication矩阵乘法
neuralnetwork如此高效2.matrixmultiplication(补充)3.matrixmultiplication的规则(补充)4.matrixmultiplication的代码(optional)【
吴恩达
skylar0
·
2024-01-18 09:21
矩阵
线性代数
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他