基于时域特征和频域特征组合的敏感特征集,再利用SVM或KNN传统分类器进行轴承故障诊断(python编程,代码有详细注释)
1.文件夹介绍(使用的是CWRU数据集)0HP-3HP四个文件夹装载不同工况下的内圈故障、外圈故障、滚动体故障和正常轴承数据。这里以打开0HP文件为例进行展示,creat_data.py是处理原始数据的脚本,负责将原始数据切不重叠割成1024的固定长度的样本,切割完,生成的每类故障下有100个样本,一共400个样本。(样本被保存在data_0HP.npy文件里,对应的标签保存在label.npy文