梯度下降法详解+代码:批量梯度下降(Batch GD)、小批量梯度下降(Mini-batch GD)、随机梯度下降(Stochastic GD)
一个简单的线性回归模型,有两种不同的训练方法来得到模型的最优解:直接使用封闭方程进行求根运算,得到模型在当前训练集上的最优参数(即在训练集上使损失函数达到最小值的模型参数)。使用迭代优化方法:梯度下降(GD),在训练集上,它可以逐渐调整模型参数以获得最小的损失函数,最终,参数会收敛到和第一种方法相同的的值。梯度下降的变体形式:批量梯度下降(BatchGD)、小批量梯度下降(Mini-batchGD