Learning from Simulated and Unsupervised Images through Adversarial Training 简介
reference:https://arxiv.org/abs/1612.07828作者AshishShrivastava,TomasPfister,OncelTuzel,JoshSusskind,WendaWang,RussWebbAbstract随着图像领域的进步,用生成的图像训练机器学习模型的可行性越来越高,大有避免人工标注真实图像的潜力。但是,由于生成的图像和真实图像的分布有所区别,用生成