分类模型-评估指标(2):ROC曲线、 AUC值(ROC曲线下的面积)【只能用于二分类模型的评价】【不受类别数量不平衡的影响;不受阈值取值的影响】【AUC的计算方式:统计所有正负样本对中的正序对】
评价二值分类器的指标很多,比如precision、recall、F1score、P-R曲线等。但这些指标或多或少只能反映模型在某一方面的性能。相比而言,ROC曲线则有很多优点,经常作为评估二值分类器最重要的指标之一。ROC曲线、AUC值:解决样本不均衡时评价指标的问题。灵敏度(Sensitivity):实际为正样本预测成正样本的概率Sensitivity=TPTP+FNSensitivity=\c