E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
stanford机器学习笔记
机器学习笔记
- Deep Q-Learning算法概览
一、Q-Learning强化学习大致可以分为两类:无模型强化学习算法和基于模型的强化学习算法。无模型强化学习算法不会学习环境转换函数的模型来预测未来状态和奖励。Q学习、深度Q网络和策略梯度方法是无模型算法,因为它们不创建环境转换函数的模型。1、Q-学习算法Q-学习算法的流程为:1.初始化您的Q表2.使用Epsilon-Greedy探索策略选择一个操作3.使用贝尔曼方程更新Q表
坐望云起
·
2023-09-27 06:30
深度学习从入门到精通
强化学习
Q学习
Q-Learning
深度Q学习
神经网络
机器学习笔记
七-----------------使用Prophet(时间序列模型)预测家用电量的数据的笔记一------数据集解析
一,数据集的下载其实家庭用电量预测仅仅是个“引子”,如果有电网数据的话,可以开发适合业务需求的模型,比如通过预测各时段各区域的用电量来协助电网更好地实现电能调度;除此之外,还可以用于发电量预测,比如光伏电站、风力发电站、水电站发电量预测…等等。模型一般不是问题,关键在数据和数据处理。数据集名称为:IndividualhouseholdelectricpowerconsumptionDataSet,
YOULANSHENGMENG
·
2023-09-26 04:48
机器学习
机器学习
「AI大咖谈」FLAG资深工程师谈ML Infra和分布式模型服务
这里是「王喆的
机器学习笔记
」的第三十六篇文章。今天我们「AI大咖谈」邀请的大咖是一位在FLAG中某家工作了4年的资深机器学习工程师。
王喆的机器学习笔记
·
2023-09-25 16:36
机器学习笔记
——9.25课堂补充
机器学习笔记
——9.25课堂补充一、泰勒展开二阶近似向量形式二、有关梯度下降几个小问题?1.梯度下降能否保证找到最优的参数?2.梯度下降法参数更新能否保证损失函数值每次下降?
AgentSmart
·
2023-09-25 08:33
机器学习
机器学习
机器学习笔记
- 通过人工干预实现安全强化学习的思路
1、人类干预强化学习深度强化学习在一些棋类游戏、视频游戏以及现实3D环境中的导航和控制任务方面取得了惊人的进展。这些成就是在模拟环境中实现的。深度强化学习能否将这一成功转化为现实世界的任务?这里面临两个主要问题。第一个是深度强化学习需要大量的观察(在现实世界的任务中获得这些观察是缓慢且昂贵的)。强化学习在实际应用中的第二个障碍是安全性。无模型强化学习代理只能通过反复试验来学习。为了学会避免灾难,他
坐望云起
·
2023-09-25 06:03
深度学习从入门到精通
强化学习
人类干预强化学习
深度学习
人工智能
神经网络
智能代理
机器学习笔记
- 生成代理的架构框架
来自Google研究人员提出的生成代理架构,它由三个主要组件组成:内存流模块、反射模块以及规划和反应模块。这种革命性的方法为模仿人类行为和认知的人工智能驱动实体开辟了新的可能性,为先进且迷人的游戏和虚拟环境铺平了道路。这种生成代理架构包括三个主要组件:A、记忆流:一种长期记忆模块,以“记忆对象”的形式记录智能体的经验,其中包含描述、记录时间以及智能体检索它们的时间。记忆流中最基本的项目是观察,它是
坐望云起
·
2023-09-24 19:05
科技动态
生成代理
NPC
人工智能
机器学习笔记
1
1、机器学习算法分类监督学习:目标值:类别-分类问题分类算法:K-近邻算法、贝叶斯分类、决策树和随机森林、逻辑回归目标值:连续型的数据-回归问题回归算法:线性回归、岭回归无监督学习:目标值:无-无监督学习算法:聚类K-means2、机器学习开发流程1)获取数据2)数据处理3)特征工程4)机器学习算法训练-模型5)模型评估6)应用3、特征工程-数据集可用数据集:1)sklearn自带的2)kaggl
从白天到早上
·
2023-09-24 16:35
机器学习
笔记
人工智能
《Towards Viewpoint Invariant 3D Human Pose Estimation》--深度图领域人体姿态估计的CNN算法
TowardsViewpointInvariant3DHumanPoseEstimation》–深度图领域人体姿态估计的CNN算法这篇文章是ECCV2016的一篇3D人体姿态估计的文章,一作AlbertHaque是LiFeiFei的学生,出自
Stanford
University
zhangboshen
·
2023-09-24 11:34
计算机视觉
人体姿态估计-CNN
算法
cnn
排得更好VS估得更准VS搜的更全「推荐、广告、搜索」算法间到底有什么区别?
这里是「王喆的
机器学习笔记
」的第三十八篇文章。今天我们聊一聊推荐、广告、搜索算法的区别。
王喆的机器学习笔记
·
2023-09-24 06:08
下载准备预训练词向量glove
glove的官网地址:https://nlp.
stanford
.edu/projects/glove/glove的github地址:https://github.com/
stanford
nlp/GloVe
BioLearner
·
2023-09-24 06:13
机器学习笔记
- 维度诅咒的数学表达
1、点之间的距离kNN分类器假设相似的点也可能有相同的标签。但是,在高维空间中,从概率分布中得出的点往往不会始终靠近在一起。我们可以用一个简单的例子来说明这一点。我们将在单位立方体内均匀地随机绘制点(如图所示),并研究该立方体内测试点的k个最近邻将占用多少空间。想象单位立方体。所有训练数据都在这个立方体内均匀采样,即,并且我们正在考虑这样一个测试点的k=10个最近邻。令ℓ为包含测试点的所有k-nn
坐望云起
·
2023-09-24 05:46
深度学习从入门到精通
机器学习
笔记
人工智能
Java从零开始!记录渣渣的每日学习
Java语言是美国Sun公司(
Stanford
UniversityNetwork),在1995年推出的高级的编程语
摇钱树不是喵
·
2023-09-23 19:58
java
机器学习笔记
:adaBoost
1介绍AdaBoost(AdaptiveBoosting)是一种集成学习方法,它的目标是将多个弱分类器组合成一个强分类器通过反复修改训练数据的权重,使得之前分类错误的样本在后续的分类器中得到更多的关注每一轮中,都会增加一个新的弱分类器,直到达到某个预定的错误率或者达到预定的最大迭代次数2详细算法介绍
UQI-LIUWJ
·
2023-09-23 16:17
机器学习
机器学习
笔记
人工智能
机器学习笔记
08---k近邻学习
k近邻(k-NearestNeighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。通常,在分类任务中可以使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中可使用“平均法”,即将这k个样本的实值输出标记的平均值作为预测结果;还可基于距离远近进
一件迷途小书童
·
2023-09-23 13:29
Machine
Learning
机器学习
学习
人工智能
机器学习笔记
- k-NN算法的数学表达
一、概述所有的机器学习算法都是有假设前提的。k-NN算法的假设前提是相似的输入有相似的输出。其分类规则是对于测试输入x,在其k个最相似的训练输入中分配最常见的标签。k-NN的正式定义:对于一个待测试数据。将的个最近邻的集合表示为。的正式定义为,并且。(意思就是在集合
坐望云起
·
2023-09-23 13:57
深度学习从入门到精通
OpenCV从入门到精通
机器学习
KNN
距离度量
opencv
分类算法
机器学习笔记
:Huber Loss
1介绍HuberLoss是回归问题中的一种损失函数,它结合了均方误差MSE和绝对误差MAE的特点。HuberLoss在误差较小的时候是平方损失,而在误差较大的时候是线性损失。因此,它在处理有噪声的数据时,尤其是存在离群点的情况下,比MSE更加鲁棒。定义如下:δ是一个超参数,上式等号右边第一项是MSE的部分([-δ,+δ]),第二项是MAE部分【(-∞,-δ)和(δ,+∞)】2python实现imp
UQI-LIUWJ
·
2023-09-23 10:34
机器学习
机器学习
笔记
人工智能
神经网络与深度学习-
Stanford
吴恩达教授-Week2(神经网络基础)
逻辑回归是一个用于二分类(binaryclassification)的算法。符号定义:逻辑回归的HypothesisFunction(假设函数)[参考:https://blog.csdn.net/weixin_36815313/article/details/105309095(非常详细)]Logistic回归损失函数(LogisticRegressionCostFunction)为了训练逻辑回归
LAANever
·
2023-09-23 06:09
机器学习笔记
11—机器学习/深度学习之激活函数及python代码实现
ML/DL之激活函数1、概述2、激活函数性质3、常用的激活函数3.1Sigmoid函数(Logistic函数)3.2Tanh函数3.3ReLU函数3.4LeakyReLU函数3.5PReLU函数3.6ELU函数3.7Softplus函数4、激活函数的选择1、概述神经网络神经元中,输入的inputs通过加权,求和后,还被作用了一个函数,这个函数就是激活函数ActivationFunction。为什么
珞沫
·
2023-09-23 05:07
机器学习
#
深度学习
激活函数
机器学习
神经网络
机器学习笔记
:概念对比——损失函数,代价函数,目标函数
损失函数LossFunction通常是针对单个训练样本而言给定一个模型输出和一个真实值y,损失函数是代价函数CostFunction通常是针对整个训练集(或者在使用mini-batchgradientdescent时一个mini-batch)的总损失目标函数ObjectiveFunction表示任意希望被优化的函数代价函数是目标函数的一种
UQI-LIUWJ
·
2023-09-23 04:24
笔记
机器学习笔记
:seq2seq & attentioned seq2seq
1Seq2Seq1.1介绍对于序列对,我们的目标是给定输入序列X,期待通过Encoder-Decoder框架来生成目标序列YEncoder对输入的序列X进行编码,将输入序列通过非线性变换转化为中间语义表示C:Decoder根据序列X的中间语义表示C和之前已经生成的历史信息y1,y2….yi-1来生成i时刻要生成的下一个值:yi1.2缺点Encoder-Decoder框架有一个明显的缺点。Encod
UQI-LIUWJ
·
2023-09-22 21:16
机器学习
机器学习
笔记
人工智能
02、ThingsBoard-物联网常用协议介绍
1、常用的物联网协议MQTTMQTT协议(MessageQueueTelemetryTransport,消息队列遥测传输协议)是IBM的Andy
Stanford
-Clark和Arcom的ArlenNipper
了凡啊
·
2023-09-21 15:48
版源码分析
物联网
网络
udp
机器学习笔记
- 视频分析和人类活动识别技术路线简述
一、理解人类活动识别首先了解什么是人类活动识别,简而言之,是对某人正在执行的活动/动作进行分类或预测的任务称为活动识别。我们可能会有一个问题:这与普通的分类任务有什么不同?这里的问题是,在人类活动识别中,您实际上需要一系列数据点来预测正确执行的动作。看看这个人做的这个后空翻动作,只有看完整视频才能知道这是一个后空翻。如果我们提供的模型仅能识
坐望云起
·
2023-09-20 16:50
深度学习从入门到精通
人工智能
机器学习
行为分析
视频分析
神经网络
3D
CNN
LSTM
【Open3D】保存ply格式为float类型的xyz
(o3d.core.Tensor(pcd_xyz,dtype=o3d.core.float32))o3d.t.io.write_point_cloud("/home/i9/experiment_ad/
stanford
坚果仙人
·
2023-09-20 08:22
python
open3d
如何提升
stanford
NER包对NE的识别速度?
1、安装snerpipinstallsner2、下载
stanford
-ner-2017-06-09.zip3、解压后,在此目录下后台执行java-Djava.ext.dirs=.
夕宝爸爸
·
2023-09-20 00:59
glove 词向量词嵌入文件国内服务器下载
解决方法mxnet已经收集了
stanford
nlp的glove词向量。可以使用mxnet的国内服务器进行下载,从而实现加速下载。
_核桃_
·
2023-09-18 07:15
pyG教程
introduction中ShapeNet失效问题解决首先用github中官方最新的shapenet.py中文提示手动下载数据压缩包#Incase`shapenet.cs.
stanford
.edu`isoffline
五阿哥爱跳舞
·
2023-09-17 18:40
图神经网络/图表示学习
pyG
torch_geometric
[NLP] LLM---<训练中文LLama2(四)方式一>对LLama2进行SFT微调
指令精调指令精调阶段的任务形式基本与
Stanford
Alpaca相同。训练方案也采用了LoRA进行高效精调,并进一步增加了可训练参数数量。
舒克与贝克
·
2023-09-17 10:34
自然语言处理
人工智能
机器学习笔记
之最优化理论与算法(十二)无约束优化问题——共轭梯度法
机器学习笔记
之最优化理论与方法——共轭梯度法引言回顾:共轭方向法的重要特征线性共轭梯度法共轭方向公式的证明过程关于线搜索公式中参数的化简关于线搜索公式中步长部分的化简关于线搜索公式中共轭方向系数的化简参数化简的目的非线性共轭梯度法
静静的喝酒
·
2023-09-16 23:05
最优化理论与方法
机器学习
深度学习
共轭梯度法
非线性共轭梯度法
FR方法
PRP方法
n步重启策略
机器学习笔记
之无约束优化问题——(阶段性收尾)共轭方向法与Wolfe准则优化方法Python示例
机器学习笔记
之无约束优化问题——基于共轭方向法与Wolfe准则优化方法的Python示例引言小插曲:画图——非标准二次型的等值线算法在图像中的表示基于精确搜索的共轭梯度法基于Wolfe准则的共轭梯度法附
静静的喝酒
·
2023-09-16 23:34
python
最优化理论与方法
机器学习
Wolfe准则
共轭梯度法python实现
无约束凸优化问题
精确搜索与非精确搜索
八、图神经网络基础【CS224W】(Datawhale组队学习)
sid=915098斯坦福官方课程主页:https://web.
stanford
.edu/class/cs224w文章目录前言深度学习基
卡拉比丘流形
·
2023-09-16 20:31
Python
深度学习
神经网络
人工智能
深度学习
机器学习笔记
- 什么是 MLOps?
什么是MLOps?Machinelearningoperations(MLOps)作为一个新兴领域,MLOps在数据科学家、机器学习工程师和人工智能爱好者中迅速崛起。MLOps代表机器学习操作。MLOps是机器学习工程的核心功能,专注于简化将机器学习模型投入生产、然后维护和监控的过程。MLOps是一种协作功能,通常由数据科学家、devops工程师和IT人员组成。MLOps有什么用?MLOps是一种
坐望云起
·
2023-09-15 12:10
机器学习
MLOps
网址汇总
http://www.numpy.org.cn/article/basics/python_numpy_tutorial.html#python推荐一个
机器学习笔记
网站不错https://luweikxy.gitbook.io
balabala19
·
2023-09-14 20:15
day01_Java概述丶环境搭建
Java语言:是美国Sun公司(
Stanford
UniversityNetwork)在1995年推出的计算机语言。姆斯·高斯林被我们称之为Java之父。
java_pedestrian
·
2023-09-13 09:24
#
java
机器学习笔记
- 从数学表示的角度看待监督学习
一、概述监督学习的目标是根据数据进行预测。比如电子邮件垃圾邮件过滤,需要将电子邮件(数据实例)分类为垃圾邮件或非垃圾邮件。按照传统计算机科学的方法,需要编写一个精心设计的程序,遵循一些规则来确定电子邮件是否是垃圾邮件。尽管这样的程序可能在一段时间内运行得相当好,但它有很大的缺点。随着垃圾邮件的变化,它必须被重写。因为垃圾邮件发送者可能会尝试对软件进行逆向工程并设计绕过它的消息。另外即使程序运行得很
坐望云起
·
2023-09-13 07:22
机器学习零基础入门实战
机器学习
特征向量
数学表示
损失函数
数据集
数据分布
Stanford
CS224N: PyTorch Tutorial (Winter ‘21) —— 斯坦福CS224N PyTorch教程 (第二部分)
本教程译文的第一部分,请见我的上一篇博文:
Stanford
CS224N:PyTorchTutorial(Winter‘21)——斯坦福CS224NPyTorch教程(第一部分)_放肆荒原的博客-CSDN
放肆荒原
·
2023-09-12 09:02
AI
PyTorch
Python
pytorch
人工智能
python
mysql leetcode打题记录
文章目录完成度基本语法高级语法连接日期函数编写函数聚合函数因为上过的数据库课实在太水了,所以打算先在菜鸟教程/CSDN/leetcode先学一下基本语法,然后去做
Stanford
数据库原理的课程CS145
___TRY_
·
2023-09-12 07:16
mysql
leetcode
数据库
pagerank
学术论文如下:Page,L.,Brin,S.,Motwani,R.,&Winograd,T.(1999).ThePageRankcitationranking:Bringingordertotheweb.
Stanford
InfoLab
在彼处
·
2023-09-11 13:48
吴恩达
机器学习笔记
(三)
前言我跳过了Octave部分的学习,转而利用这部分时间去研究python如何实现这系列课程的小作业,当作是熟悉一边python的一些常用库及一些好用的工具。关于这系列的python代码参考下面这个大佬的代码:吴恩达机器学习与深度学习作业目录-Cowry-CSDN博客接下来开始第三周的学习,线性回归算法结束,进入下一个算法。视频课简记6、逻辑回归6.1分类问题分类问题在第一周一开始举得例子也曾接触过
yh_y
·
2023-09-11 09:26
【计算机视觉 | 语义分割】语义分割常用数据集及其介绍(四)
文章目录一、PROMISE12二、BraTS2015三、LIP(LookintoPerson)四、BigEarthNet五、
Stanford
Background(StandfordBackgroundDataset
旅途中的宽~
·
2023-09-11 05:03
计算机视觉数据集全部汇总介绍
计算机视觉
人工智能
语义分割
机器学习笔记
之最优化理论与方法(十)无约束优化问题——共轭梯度法背景介绍
机器学习笔记
之最优化理论与方法——共轭梯度法背景介绍引言背景:共轭梯度法线性共轭梯度法共轭方向共轭VS正交共轭方向法共轭方向法的几何解释引言本节将介绍共轭梯度法,并重点介绍共轭方向法的逻辑与几何意义。
静静的喝酒
·
2023-09-11 01:42
最优化理论与方法
机器学习
深度学习
共轭方向
标准型
共轭方向法的几何解释
坐标轴交替下降法
向量投影
机器学习笔记
- 使用具有triplet loss的孪生网络进行图像相似度估计
一、简述孪生网络是一种网络架构,包含两个或多个相同的子网络,用于为每个输入生成特征向量并进行比较。孪生网络可以应用于不同的场景,例如检测重复项、发现异常和人脸识别。此示例使用具有三个相同子网的孪生网络。我们将向模型提供三张图像,其中两张是相似的(锚点和正样本),第三张是不相关的(负样本)。我们的目标是让模型学习估计图像之间的相似性。为了让网络学习,我们使用tripletloss损失函数。可以在下面
坐望云起
·
2023-09-09 21:52
深度学习从入门到精通
triplet
loss
孪生网络
深度学习
tensorflow
损失函数
距离度量
人工智能
CS排行榜
/10:清华No.1华科No.6浙大No.9东南大No.10再找找USA的MIT排第八,被华科超越Austin不熟悉总之中国占4位麻省理工第8其余大学不熟悉熟悉的CMU(卡基梅隆)、UCB(伯克利)、
Stanford
wustzhy
·
2023-09-09 12:32
SplitMask:大规模数据集是自我监督预训练的必要条件吗?
这是2021年发布的一篇论文,它在自监督预训练场景中使用小数据集,如
Stanford
Cars,Sketch或COCO,它们比ImageNet小几个数量级。
·
2023-09-09 11:49
机器学习笔记
之最优化理论与方法(八)无约束优化问题——常用求解方法(中)
机器学习笔记
之最优化理论与方法——基于无约束优化问题的常用求解方法[中]引言回顾:最速下降算法的缺陷经典牛顿法基本介绍经典牛顿法的问题经典牛顿法的优点与缺陷经典牛顿法示例修正牛顿法介绍拟牛顿法拟牛顿法的算法过程矩阵
静静的喝酒
·
2023-09-07 22:06
最优化理论与方法
机器学习
深度学习
牛顿法
拟牛顿法
牛顿法的python实现
牛顿法的缺陷
机器学习笔记
之最优化理论与方法(九)无约束优化问题——常用求解方法(下)
机器学习笔记
之最优化理论与方法——基于无约束优化问题的常用求解方法[下]引言回顾:经典牛顿法的缺陷与拟牛顿法思想经典牛顿法缺陷与修正牛顿法拟牛顿法与矩阵Bk+1\mathcalB_{k+1}Bk+1的选择拟牛顿法之
静静的喝酒
·
2023-09-07 22:04
最优化理论与方法
机器学习
深度学习
ShermanMorrison
BFGS拟牛顿法
DFP拟牛顿法
SR-1拟牛顿法
经典牛顿法的缺陷
机器学习笔记
:轨迹驻留点 staypoint
1定义在轨迹数据分析中,"停留点"(Staypoint)是一个非常关键的概念,它反映了个体或物体在某一地点的停留行为。通常,在一段时间内,如果一个人或物体在一个较小的地理区域内的移动距离低于某个阈值,并且停留时间超过某个设定的时间阈值,那么这个地理区域就可以被认定为一个停留点。如上图,从p5开始,后续的点p6~p8和p5的空间距离都比较小,同时p5到p8的时间跨度很大——>p5~p8被认为是一个驻
UQI-LIUWJ
·
2023-09-07 08:28
机器学习
笔记
机器学习笔记
之最优化理论与方法(七)无约束优化问题——常用求解方法(上)
机器学习笔记
之最优化理论与方法——基于无约束优化问题的常用求解方法[上]引言总体介绍回顾:线搜索下降算法收敛速度的衡量方式线性收敛范围高阶收敛范围二次终止性朴素算法:坐标轴交替下降法最速下降法(梯度下降法
静静的喝酒
·
2023-09-06 16:17
最优化理论与方法
python
坐标轴交替下降法
梯度下降法
梯度下降法的缺陷
坐标上升法
python实现梯度下降法
机器学习笔记
:node2vec(论文笔记:node2vec: Scalable Feature Learning for Networks)
2016KDD1intro利用graph上的节点相似性,对这些节点进行embedding同质性:节点和其周围节点的embedding比较相似蓝色节点和其周围的节点结构等价性结构相近的点embedding相近比如蓝色节点,都处于多个簇的连接处2随机游走2.1介绍随机游走是一种自监督学习的embedding方法,不需要利用节点标签也不需要节点的特征,训练出来的embedding也不依赖于任何的特定任务
UQI-LIUWJ
·
2023-09-06 15:36
论文笔记
论文阅读
机器学习笔记
- 【机器学习案例】基于KerasCV的预训练模型自定义多头+多标签预测
一、KerasCVKerasCV是一个模块化计算机视觉组件库,可与TensorFlow、JAX或PyTorch原生配合使用。这些模型、层、指标、回调等基于KerasCore构建,可以在任何框架中进行训练和序列化,并在另一个框架中重复使用,而无需进行昂贵的迁KerasCV可以理解为KerasAPI的水平扩展:组件是新的第一方Keras对象,它们过于专业化,无法添加到核心Keras中。它们获得与核心K
坐望云起
·
2023-09-06 12:58
机器学习
数字图像及音视频处理
机器学习
人工智能
KerasCV
多标签预测
kaggle
object
detection
目标检测
机器学习笔记
之最优化理论与方法(六)无约束优化问题——最优性条件
机器学习笔记
之最优化理论与方法——无约束优化问题[最优性条件]引言无约束优化问题无约束优化问题最优解的定义无约束优化问题的最优性条件无约束优化问题的充要条件无约束优化问题的必要条件无约束优化问题的充分条件引言本节将介绍无约束优化问题
静静的喝酒
·
2023-09-05 15:54
最优化理论与方法
无约束优化问题
无约束优化的最优性条件
无约束优化——一阶必要条件
无约束优化——二阶必要条件
无约束优化——充分条件
上一页
4
5
6
7
8
9
10
11
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他