为了介绍扩展欧几里得,我们先介绍一下贝祖定理:
即如果a、b是整数,那么一定存在整数x、y使得ax+by=gcd(a,b)。
换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍。(可以来判断一个这样的式子有没有解)
有一个直接的应用就是 如果ax+by=1有解,那么gcd(a,b)=1;
要求出这个最大公因数gcd(a,b),我们最容易想到的就是古老悠久而又相当强大的辗转相除法:
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
但是,对于上面的式子ax+by=m来说,我们并不仅仅想要知道有没有解,而是想要知道在有解的情况下这个解到底是多少。
所以,扩展欧几里得
当到达递归边界的时候,b==0,a=gcd(a,b) 这时可以观察出来这个式子的一个解:a*1+b*0=gcd(a,b),x=1,y=0,注意这时的a和b已经不是最开始的那个a和b了,所以我们如果想要求出解x和y,就要回到最开始的模样。
初步想法:由于是递归的算法,如果我们知道了这一层和上一层的关系,一层一层推下去,就可以推到最开始的。类似数学上的数学归纳法。
假设当前我们在求的时a和b的最大公约数,而我们已经求出了下一个状态:b和a%b的最大公因数,并且求出了一组x1和y1使得 b*x1+(a%b)*y1=gcd
(注意在递归算法中,永远都是先得到下面一个状态的值)
这时我们可以试着去寻找这两个相邻状态的关系:
首先我们知道:a%b=a-(a/b)*b;带入:
b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1) = gcd 发现 x = y1 , y = x1 – a/b*y1
这样我们就得到了每两个相邻状态的x和y的转化,就可以在求gcd的同时对x和y进行求值了hiahia
-----------------------------------------------------------------我是分割线哇----------------------------------------------------------------------------
板子板子:
#include
#include
#include
using namespace std;
int exgcd(int a,int b,int &x,int &y)//扩展欧几里得算法
{
if(b==0)
{
x=1;y=0;
return a; //到达递归边界开始向上一层返回
}
int r=exgcd(b,a%b,x,y);
int temp=y; //把x y变成上一层的
y=x-(a/b)*y;
x=temp;
return r; //得到a b的最大公因数
}
呼呼