- 11.4 看不懂就慢慢看啊
反复练习的阿离很笨吧
记得组合数学正交拉丁方从0开始!突然觉得老师说得很有道理,演化计算里活得最好的,不是最优秀的但也不是最差的,是最能适应环境的,别人怎么做,他就怎么做。动态规划,运筹学贝叶斯是生成学习算法,生成一个概率模型判别学习算法高斯判别分析/**NB.java*Copyright2005LiangxiaoJiang*/packageweka.classifiers.gla;importweka.core.*;
- 信息学奥赛初赛天天练-26-CSP-J2023基础题攻略,组合数学、高精度算法、计算机存储奥秘与操作系统实践
ya888g
信息学奥赛初赛算法组合数学高精度算法信息学奥赛
PDF文档公众号回复关键字:20240611单项选择题(共15题,每题2分,共计30分:每题有且仅有一个正确选项)6小明在某一天中依次有七个空闲时间段,他想要选出至少一个空闲时间段来练习唱歌,但他希望任意两个练习的时间段之间都有至少两个空闲的时间段让他休息,则小明一共有()种选择时间段的方案。A31B18C21D337以下关于高精度运算的说法错误的是()。A高精度计算主要是用来处理大整数或需要保留
- 【洛谷 P8649】[蓝桥杯 2017 省 B] k 倍区间 题解(前缀和+同余定理+组合数学)
HEX9CF
AlgorithmProblems蓝桥杯职场和发展
[蓝桥杯2017省B]k倍区间题目描述给定一个长度为NNN的数列,A1,A2,⋯ANA_1,A_2,\cdotsA_NA1,A2,⋯AN,如果其中一段连续的子序列Ai,Ai+1,⋯Aj(i≤j)A_i,A_{i+1},\cdotsA_j(i\lej)Ai,Ai+1,⋯Aj(i≤j)之和是KKK的倍数,我们就称这个区间[i,j][i,j][i,j]是KKK倍区间。你能求出数列中总共有多少个KKK倍区
- 算法——组合数学——二项式定理
戏拈秃笔
数据结构与算法(java版)算法
杨辉三角是二项式系数的典型应用当n较大,且需要取模时,二项式系数有两种计算方法:一:递推公式,二:逆方法一:用递推公式计算二项式系数publicclassBinomialCoefficient{publicstaticintcalculate(intn,intk){if(k>n){return0;//如果k大于n,则二项式系数为0}int[][]dp=newint[n+1][k+1];for(in
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 世界顶级名校计算机专业,都在用哪些书当教材?(文末送书)
小尘要自信
java开发语言数据库算法赠书计算机组成
目录01《深入理解计算机系统》02《算法导论》03《计算机程序的构造和解释》04《数据库系统概念》05《计算机组成与设计:硬件/软件接口》06《离散数学及其应用》07《组合数学》08《斯坦福算法博弈论二十讲》参与规则清华、北大、MIT、CMU、斯坦福的学霸们在新学期里要学什么?今天我们来盘点一下那些世界名校计算机专业采用的教材。01《深入理解计算机系统》原书第3版)作者:兰德尔E.布莱恩特大卫R.
- 混乱的数组 蓝桥杯2024省赛 题解
鱼香猫猫头
蓝桥杯算法数据结构pythonjavac++c语言
混乱的数组题意思路如下:①优先考虑特殊情况,数组是一个严格递减的数组(每个数字之间相差1,最后一位必须为1),例子如下:长度为7,对应的数组为[7,6,5,4,3,2,1],根据组合数学C(7,2)=21,共有21对逆序对长度为8,对应的数组为[8,7,6,5,4,3,2,1],根据组合数学C(8,2)=28,共有28对逆序对假设逆序对个数为x时,当x∈(21,28],其数组长度为8;当x=21时
- 备战蓝桥杯---组合数学2
cocoack
蓝桥杯算法数学c++
本专题主要介绍容斥原理。大家高中的时候肯定接触过韦恩图,容斥原理比较通俗的理解就是减去所有可能并加上重叠的部分。我们直接看公式:知道后,我们先看道模板题:下面是AC代码:#includeusingnamespacestd;#defineintlonglonginta[6],n;signedmain(){a[0]=2;a[1]=5;a[2]=11;a[3]=13;while(cin>>n){ints
- LeetCode62不同路径解题记录
shuangge666666
java数据结构动态规划leetcode算法
LeetCode62.不同路径解题感想一.题目介绍二.解题思路及代码实现方法一:深度优先搜索(dfs)方法二:记忆化搜索方法三:动态规划方法四:组合数学法总结一.题目介绍题目链接:LeetCode62.不同路径;二.解题思路及代码实现方法一:深度优先搜索(dfs)由于是求从一个点到另一个点的路径有多少条,显而易见,可以采用深度优先搜索的方式,遍历所有路径,如果能够到达目标坐标的路径并统计路径数目然
- 备战蓝桥杯---组合数学基础1
cocoack
蓝桥杯算法c++数学
让我们来几道高中的组合题吧:1.我们一定有n个向下,为2.我们挑最大的两个,条件是他们奇偶性相同,为2*A10,2;3.用捆绑法即可。4.我们用隔板法,为5.问题等价于23个相同的球放到3个盒子里,每个盒子至少有一个。下面我们直接看题:很显然,当无限制条件时,每个a[i]贡献1+2+...+n,因此我们对没有限制的快速幂,有限制的单独计算即可,下面是AC代码:#includeusingnamesp
- C#,铁蛋·奥纳奇数(Geek Onacci Number)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipes算法c#开发语言
Geek译为“极客”,不贴切,译为“铁蛋”甚妙!1铁蛋·奥纳奇数(GeekOnacciNumber)铁蛋·奥纳奇数(GeekOnacciNumber)也称为“极客纳奇”数列。极客纳奇数列是组合数学中的一个数字序列。极客纳奇数列的第N项是该数列中其前三项的和,即第(N–1)项、(N–2)项项和第(N–3)项极客纳奇数之和。2计算结果3源程序(文本格式)usingSystem;usingSystem.
- 鸡数题! - 组合数学 + 第二类斯特林数
.y.a.o.
算法c++思维
题面分析第二类斯特林数将每一位1看作球,元素看作盒子,直接计算。代码#includeusingnamespacestd;usingll=longlong;constintN=1e5+10;constintmod=1e9+7;intfact[N],infact[N];intqmi(inta,intb,intp){intans=1%p;while(b){if(b&1)ans=(ll)ans*a%p;a
- 牛客周赛 Round 31 F.小红的连续段【隔板法+组合数学】
lianxuhanshu_
数学算法
原题链接:https://ac.nowcoder.com/acm/contest/74362/F时间限制:C/C++1秒,其他语言2秒空间限制:C/C++262144K,其他语言524288K64bitIOFormat:%lld题目描述小红定义一个字符串的“连续段”数量为:相同字符的极长连续子串的数量。例如,"aabbaaa"共有3个连续段:"aa"+"bb"+"aaa"。现在,小红希望你求出,长
- C#,佩尔数(Pell Number)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesc#算法佩尔数PellNumber
1佩尔数(PellNumber)佩尔数(PellNumber)是一个自古以来就知道的整数数列,由递推关系定义,与斐波那契数类似。佩尔数呈指数增长,增长速率与白银比的幂成正比。它出现在2的算术平方根的近似值以及三角平方数的定义中,也出现在一些组合数学的问题中。2源程序usingSystem;namespaceLegalsoft.Truffer.Algorithm{publicstaticpartia
- 【基础数学】容斥原理
devil_son1234
基础知识
对容斥原理的描述容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。描述容斥原理可以描述如下:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分关于集合的原理公式上述描述的公式形式可以表示如下:它可以写得更简洁一些,我们将
- 【组合数学】【动态规划】【前缀和】1735生成乘积数组的方案数
闻缺陷则喜何志丹
#算法题动态规划算法c++力扣组合数学前缀和数目
作者推荐【动态规划】【状态压缩】【2次选择】【广度搜索】1494.并行课程II本文涉及知识点动态规划汇总C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例包括课程视频组合数学LeetCode1735生成乘积数组的方案数给你一个二维整数数组queries,其中queries[i]=[ni,ki]。第i个查询queries[i]要求构造长度为ni、每个元素都是正整数的数组,且满足所有元素的乘
- 【图论】基环树
Texcavator
图论图论
基环树其实并不是树,是指有n个点n条边的图,我们知道n个点n-1条边的连通图是树,再加一条边就会形成一个环,所以基环树中一定有一个环,长下面这样:由基环树可以引申出基环内向树和基环外向树基环内向树如下,特点是每个点的出度为1基环外向树如下,特点是每个点的入度为1下面放点题,做到相关题目随时更新基环树+组合数学CF1454ENumberofSimplePaths先记录环上的点,每个环上的点引出去的子
- Catalan数
林小果1
数据结构与算法(java实现)算法java数据结构
文章目录Catalan数Leecode96不同的二叉搜索树题目描述解题思路代码Leecode22括号生成题目描述代码Catalan数Catalan数是一种组合数学的计数方法,常用于解决一些计数问题,例如括号匹配问题、二叉树的节点问题等。Catalan数的计算公式如下:C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=
- C#,斯特林数(Stirling Number)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesc#算法
1斯特林数在组合数学,斯特林数可指两类数,第一类斯特林数和第二类斯特林数,都是由18世纪数学家JamesStirling提出的。它们自18世纪以来一直吸引许多数学家的兴趣,如欧拉、柯西、西尔沃斯特和凯莱等。后来哥本哈根(Copenhagen)大学的尼尔森(NielsNielsen,1865-1931)提出了"StirlingschenZahlenersterArt"[第一类斯特林数]和"Stirl
- C#,欧拉数(Eulerian Number)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesC#算法
1欧拉数欧拉数特指EulerianNumber,不同于Eulernumbers,Euler'snumber哦。组合数学中,欧拉数(EulerianNumber)是从1到n中正好满足m个元素大于前一个元素(具有m个“上升”的排列)条件的排列个数。定义为:计算公式:相关推到:计算结果:2文本格式usingSystem;namespaceLegalsoft.Truffer.Algorithm{publi
- C#,洛布数(Lobb Number)的计算方法与源代码
深度混淆
C#算法演义AlgorithmRecipesc#算法
1洛布数(LobbNumber)在组合数学中,洛布数(LobbNumber)L(m,n)计算n+m开括号的排列方式,以形成一个有效的平衡括号序列的开始。Lobb数由两个非负整数m和n参数化,其中n>=m>=0。可通过以下方式获得:洛布数(LobbNumber)还用于计算将值+1的n+m个副本和值-1的n–m个副本排列成一个序列的方式的数量,以便序列的所有部分和都是非负的。读取来特别拗口,看代码吧。
- C#,德兰诺依数(Dealnnoy Number)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesc#算法
1DealnnoyNumber德兰诺依数,德兰诺伊数德兰诺依数是以法国军官、业余数学家亨利·德兰诺依(HenryDealnnoy)的名字命名。HenryDealnnoy在组合数学中,德兰诺依数描述了从(0,0)到(m,n)的格路问题中,只允许按照(0,1)、(1,0)或者(1,1)的方式来走,一共有多少不同的方案数。DealnnoyNumber的计算公式:计算结果:源程序:2文本格式usingSy
- 【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率
闻缺陷则喜何志丹
#算法题算法深度优先c++力扣组合数学概率颜色
作者推荐【动态规划】【字符串】【行程码】1531.压缩字符串本文涉及知识点动态规划汇总深度优先搜索组合数学LeetCode1467两个盒子中球的颜色数相同的概率桌面上有2n个颜色不完全相同的球,球上的颜色共有k种。给你一个大小为k的整数数组balls,其中balls[i]是颜色为i的球的数量。所有的球都已经随机打乱顺序,前n个球放入第一个盒子,后n个球放入另一个盒子(请认真阅读示例2的解释部分)。
- C#,贝尔数(Bell Number)的计算方法与源程序
深度混淆
C#算法演义AlgorithmRecipesc#算法
1埃里克·坦普尔·贝尔贝尔数是组合数学中的一组整数数列,以埃里克·坦普尔·贝尔(EricTempleBell)命名,埃里克·坦普尔·贝尔(生于1883年2月7日,苏格兰阿伯丁郡阿伯丁,于1960年12月21日在美国加利福尼亚州沃特森维尔去世),苏格兰裔美国数学家、教育家和作家,对分析数论做出了重大贡献。贝尔在19岁时移民到美国,并立即进入斯坦福大学就读,两年后他在那里获得了学士学位。经过1908年
- C#,恩廷格尔组合数(Entringer Number)的算法与源程序
深度混淆
C#算法演义AlgorithmRecipesc#算法
恩廷格尔组合数(EntringerNumber)组合数学的序列数字之一。E(n,k)是{1,2,…,n+1}的排列数,从k+1开始,先下降后上升。计算结果:源代码:1文本格式usingSystem;namespaceLegalsoft.Truffer.Algorithm{//////EntringerNumber///Entringer数E(n,k)是{1,2,…,n+1}的排列数,从k+1开始,
- 数字与数学的基础问题(算法村第十三关青铜挑战)
陈星泽SSR
算法村算法
数学的门类很多,涉及的范围很广,很多难度也超大,但是在算法中,一般只会选择各个学科的基础问题来考察,例如素数问题、幂、对数、阶乘、幂运算、初等数论、几何问题、组合数学等等。数字统计专题数组元素积的符号1822.数组元素积的符号-力扣(LeetCode)已知函数signFunc(x)将会根据x的正负返回特定值:如果x是正数,返回1。如果x是负数,返回-1。如果x是等于0,返回0。给你一个整数数组nu
- 【蓝桥备赛】数组分割——组合数学?
lcx_defender
#蓝桥算法蓝桥杯javac++
题目链接数组分割个人思路两个数组都需要和为偶数,那么就去思考一个数组如何才能和是偶数呢??数组里肯定要么是奇数要么是偶数,偶数无论有多少个,都不会改变一个数组的奇偶性。但是奇数个奇数的和还是奇数,偶数个奇数的和就会是偶数(这个应该就不用证明了吧)。那么这个问题就被转换为,求数组中奇数的个数!当我们遍历完数组后,获取到数组中奇数与偶数的个数。如果奇数的数量为奇数,那么我们无论怎么去分,都无法将奇数个
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- <蓝桥杯软件赛>零基础备赛20周--第15周--快速幂+素数
罗勇军
蓝桥杯软件赛零基础备赛20周蓝桥杯职场和发展
报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集20周的完整安排请点击:20周计划每周发1个博客,共20周。在QQ群上交流答疑:文章目录1.模运算2.快速幂3.素数3.1小素数的判定3.2素数筛3.3质因数分解第14周: 快速幂+素数 蓝桥杯肯定考数学,例如数论、几何、概率论、组合数学等。这里介绍几个简单、常见的知识点。1.模运算
- Educational Codeforces Round 156 (Rated for Div. 2) D. Monocarp and the Set(组合数学 插空法)
Code92007
组合数学(容斥原理)组合数学插空法
题目对于一个未确定的长为n的排列a(2三种可能第i(1的某一个询问修改前的满足限制的合法排列数,以及每次修改后满足限制的合法排列数思路来源jiangly代码题解不看不会,一看秒会注意到,如果i在[1,i-1]已经确定好的排列里插空,也就是确定了相对大小,那么排列是唯一确定的这个插空的思想,以下这类dp是一类经典题:CCPC-WannaflyWinterCampDay4G.置置置换/hdu4055N
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f