- 探索C#编程:高效解决N皇后问题的回溯算法实现
AitTech
算法算法c#开发语言
在C#中,回溯算法是一种通过探索所有可能的候选解来找出所有解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化来撤销上一步或上几步的计算,以获得新的候选解。这个过程一直进行,直到找到所有解或确定无解。回溯算法常用于解决组合问题、排列问题、子集问题、棋盘问题(如八皇后问题)、图的着色问题、旅行商问题等。示例:C#中的回溯算法实现N皇后问题N皇后问题是一个
- 力扣-N皇后问题
坚持拒绝熬夜
leetcode算法职场和发展
.-力扣(LeetCode)开始的思路由于n=4情况太多我们先画一下n=3的决策树可以知道皇后不能在同一行,因为我的思路是每一行每一行的填写皇后,所以不考虑行的皇后会重叠,主要考虑列的皇后会不会重叠,还有斜线的列皇后可以直接用一个数组col来标记一列中有皇后标记为true而斜线的需要一点数学功底如图可以转化成截距相等,当斜线斜率为1时,可能会有负数的情况,两边同时加上n,因为我想使用下标来标记截距
- leetcode算法题之N皇后
前端码农小黄
算法算法leetcode
N皇后也是一道很经典的问题,问题如下:题目地址按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。解法:回溯回溯是基于DFS的一种算法,它通过在解
- 九度 题目1254:N皇后问题
小白龙v5
九度C++N皇后
题目描述:N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。输入:输入包含多组测试数据。每组测试数据输入一个整数n(3usingnamespacestd;intn,sum;booldps
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- leetcode51 N皇后问题
浦东新村轱天乐
leetcode算法数据结构
https://programmercarl.com/0051.N%E7%9A%87%E5%90%8E.html代码随想录讲的很清楚。回溯法从上到下按行搜索,因此back_tracking(chessboard,row+1)其参数为row+1判断该位置是否符合终止条件是i==nclassSolution{public://vectorpath_;vector>res_;boolvalid(vect
- 【leetcode题解C++】51.N皇后 and 76.最小覆盖子串
WISHMELUCK1'
leetcodeleetcodec++算法
51.N皇后按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。示例1:输入:n=4输出:[[".Q..","...Q","Q...","..Q.
- C++ dfs状态的表示(五十三)【第十三篇】
我家小白小花儿
C++深度优先算法
今天我们将来求解N皇后问题。1.N皇后问题N皇后问题是一个经典的问题,在一个N×N的棋盘上放置N个皇后,每行刚好放置一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。上图就是一个合法的8皇后的解。N皇后问题是指:计算一共有多少种合法的方法放置N个皇后。很显然,我们依然会用dfs来求解N皇后问题,我们的搜索策略如下。从第0列开始,我们依次给每一列放置一个皇后,对于一个确定的列,
- day30 n皇后
NHCyrus
算法
day29回溯N皇后题目链接:N皇后题目描述按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中‘Q’和‘.’分别代表了皇后和空位。?解答classSolution{List>res
- LeetCode|Python|400题分类刷题记录——递归
ClaraR
pythonleetcodepythonleetcode
递归/DFS/BFS在不断更新中...51.N皇后n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。示例1:输入:n=4输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...",
- 【LeetCode】51. N 皇后(困难)——代码随想录算法训练营Day30
晴雪月乔
代码随想录算法训练营#LeetCode回溯法算法代码随想录算法训练营leetcode回溯法
题目链接:51.N皇后题目描述按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。示例1:输入:n=4输出:[[".Q..","...Q","Q.
- leetcode:51. N皇后
暮色恍然
LeetCodeLeetCode
题目:n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。上图为8皇后问题的一种解法。给定一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个明确的n皇后问题的棋子放置方案,该方案中‘Q’和‘.’分别代表了皇后和空位。示例:输入:4输出:[[".Q…",//解法1“…Q”,“Q…”,“…Q.”],["…Q.",//解法2“Q…”,“…Q”,“.Q…”
- leetcode:51. N 皇后
uncle_ll
编程练习-Leetcodeleetcode八皇后N皇后回溯算法训练
51.N皇后来源:力扣(LeetCode)链接:https://leetcode.cn/problems/n-queens/按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中‘Q’
- 回溯算法——n皇后问题
桑稚远方~
算法
什么是回溯算法?回溯法,⼀般可以解决如下几种问题:组合问题、排列问题、子集问题、棋盘问题等问题;n皇后问题就是其中的棋盘问题;回溯法要解决的问题都可以抽象为树形结构,可以理解为N叉树;回溯法使用递归,在一个集合中递归找子集,集合的大小就可以理解为需要递归的层;并且使用递归就要有终止条件,不然就在函数体中出不来,会出错。所以这颗N叉树就是有限的;回溯算法的流程:1.回溯函数进入的参数以及返回值;就是
- java写n皇后问题回溯法_回溯算法:N皇后问题
知乎电影
java写n皇后问题回溯法
❞如果对回溯法理论还不清楚的同学,可以先看这个视频:n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互***。上图为8皇后问题的一种解法。给定一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个明确的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。示例:输入:4输出:[[".Q..",//解法1"...Q","Q...","..Q.
- python中级篇1:n皇后问题(回溯算法)
浪矢秀一
算法python
hello!大家好,我是浪矢秀一。最近经历了许多事情,终于是恢复1次更新了。那么今天呢,我们来学习中级篇,需要学过不少python知识的人来学习。好了,废话不多说,我们进入今天的课程!n皇后问题题目在1个n*n的国际象棋棋盘上,放置n个皇后,要求:同1行、同1列、同1斜线上只能有1个皇后。题目分析既然是有很多行,分别满足不同条件,那么我们可以进行枚举每行,再枚举每列。但是,如果1行都不满足的话,就
- 回溯算法:N皇后问题
DevDiary
算法回溯算法N皇后问题
N皇后问题是一个经典的回溯算法应用问题,要求在一个N×N的棋盘上放置N个皇后,使得它们互不攻击。即任何两个皇后都不能位于同一行、同一列或同一对角线上。这个问题可以通过回溯算法来解决,下面详细讲解这个问题的解法。解题思路逐行放置:一种有效的解决方案是逐行放置皇后,这样可以保证每行只有一个皇后。检查冲突:放置每个皇后时,需要检查当前放置的皇后是否与已放置的皇后冲突(即检查列和对角线)。回溯:如果当前行
- 网课:N皇后问题——牛客(题解和疑问)
2301_80718054
算法dfs
题目描述给出一个n×nn\timesnn×n的国际象棋棋盘,你需要在棋盘中摆放nnn个皇后,使得任意两个皇后之间不能互相攻击。具体来说,不能存在两个皇后位于同一行、同一列,或者同一对角线。请问共有多少种摆放方式满足条件。输入描述:一行,一个整数n(1≤n≤12)n(1\len\le12)n(1≤n≤12),表示棋盘的大小。输出描述:输出一行一个整数,表示总共有多少种摆放皇后的方案,使得它们两两不能
- 第三十天| 51. N皇后
%dionysus%
代码随想录算法训练营算法leetcode
Leetcode51.N皇后题目链接:51N皇后题干:按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。思考:回溯法。先定义结果集result,
- 常用算法模板之图论(持续更新)
荔枝还冷静
算法图论深度优先数据结构c++图搜索算法
DFSDFS的结果就是一颗搜索树,只不过每次只记录眼前的分支,然后通过栈回溯到上一个节点再往下朝另一个方向搜索,绘出所有轨迹就是一棵搜索树。排列数字问题#includeusingnamespacestd;constintN=8;intn,path[N];boolst[N];voiddfs(intu){if(u==n){for(inti=0;i>n;dfs(0);return0;}经典N皇后问题#i
- 二道经典OJ题带你入门回溯剪枝算法
烟雨长虹,孤鹜齐飞
C++剪枝算法c语言C++回溯DFS
风起于青萍之末浪成于微澜之间个人主页个人专栏前期回顾-环形链表目录回溯算法的简介N皇后问题思路代码测试N皇后思路判断一竖列是否有皇后判断对角线是否有皇后代码测试回溯算法的简介回溯是递归的副产品,只要有递归就会有回溯,所以回溯法也经常和DFS混在一起回溯的介绍:在搜索解空间时会采用尝试与回退的策略回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,
- 【力扣 51】N 皇后(回溯+剪枝+深度优先搜索)
HEX9CF
AlgorithmProblemsleetcode剪枝深度优先
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中‘Q’和‘.’分别代表了皇后和空位。示例1:输入:n=4输出:[[“.Q…”,“…Q”,“Q…”,“…Q.”],[“…Q.”,“Q
- U402491 N皇后问题
SYZ0610
算法
题目传送门题目描述一个n×n的国际象棋棋盘,有n个皇后被放置在棋盘上,使得每两个皇后之间不能直接吃掉对方(每行、每列和两个对角线有且只有一个皇后)。输入格式一个n,代表棋盘大小(n*n)和皇后个数输出格式按给定顺序和格式输出所有N皇后问题的解输入输出样例输入#18输出#1No.1Q...........Q..........Q.....Q....Q...........Q..Q.........Q
- n皇后问题(DFS)
自律的kkk
算法数据结构
原题详细如下:n−皇后问题是指将n个皇后放在n×n的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。现在给定整数n,请你输出所有的满足条件的棋子摆法。输入格式共一行,包含整数n。输出格式每个解决方案占n行,每行输出一个长度为n的字符串,用来表示完整的棋盘状态。其中.表示某一个位置的方格状态为空,Q表示某一个位置的方格上摆着皇后。每个方案输出完成后,输出一
- 【算法很美】深入递归 (下)深度优先搜索DFS问题
小易I
算法学习java算法蓝桥杯数据结构dfs
深搜、回溯、剪枝深度优先搜索DFS2.1无死角搜索I数独游戏部分和水洼数目2.2回溯和剪枝n皇后问题素数环困难的串小结一些使用2.1无死角搜索I数独游戏你一定听说过“数独”游戏。如下图所示,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个同色九宫内的数字均含1-9,不重复。数独的答案都是唯一的,所以,多个解也称为无解。本图的数字据说是芬兰数学家花了3个月的
- Leetcode-3--递归、DFS、回溯
NKidult
Leetcode
Leetcode--回溯、进制运算递归24两两交换链表143重排链表98验证二叉搜索树1796不同的二叉搜索树二叉树展开成链表回溯22括号生成39组合总和40组合总和216组合总和46排列47全排列⭐️剑指offer字符串排列131分割回文串78子集416.分割等和子集N皇后问题面试题08.08.有重复字符串的排列组合硬币兑换74单词搜索剑指Offer55-II.平衡二叉树面试题08.08.有重复
- 力扣labuladong一刷day70天回溯大集合
当年拼却醉颜红
力扣算法题leetcode算法职场和发展
力扣labuladong一刷day70天回溯大集合文章目录力扣labuladong一刷day70天回溯大集合一、51.N皇后二、37.解数独一、51.N皇后题目链接:https://leetcode.cn/problems/n-queens/思路:n皇后问题,利用回溯来搜索正确答案,每次向下递归都是新的一层,进入递归之前都会做是否可以作为皇后的判断。classSolution{List>array
- 2021-02-16:n皇后问题。给定一个整数n,返回n皇后的摆法有多少种?
福大大架构师每日一题
福哥答案2021-02-16:自然智慧即可。1.普通递归。有代码。需要判断同列和斜线。2.位运算递归。有代码。3.我的递归。有代码。只需要判断斜线。代码用golang编写,代码如下:packagemainimport("fmt""time")funcmain(){n:=12fmt.Println(n,"皇后问题")fmt.Println("------")now:=time.Now()fmt.Pr
- 回溯算法--LeetCode-51 N皇后
DY_HM
Leetcoden皇后回溯LeetCodeJava
题目链接:https://leetcode-cn.com/problems/n-queens/n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给定一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个明确的n皇后问题的棋子放置方案,该方案中'Q'和'.'分别代表了皇后和空位。示例:输入:4输出:[[".Q..",//解法1"...Q","Q..."
- LeetCode刷题-----N皇后问题
代码改变世界~
LeetCodeleetcode算法数据结构
LeetCode刷题-----N皇后问题(回溯法)51.N皇后题目描述:n皇后问题研究的是如何将n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数n,返回所有不同的n皇后问题的解决方案。每一种解法包含一个不同的n皇后问题的棋子放置方案,该方案中‘Q’和‘.’分别代表了皇后和空位。思路:枚举每一行,每一列,判断是否放的下classSolution{List>list=newL
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite