- 学习笔记——BSGS
Young_20220202
学习笔记哈希算法
众所周知,北上广深是中国非常一线的城市,北京是首都,地处……正片开始!一、BSGS基础算法实现目标:Ax≡B(mod P),(gcd(P,A)=1)A^x\equivB(\modP),(\gcd(P,A)=1)Ax≡B(modP),(gcd(P,A)=1)求最小的xxx很明显,如果暴力枚举,时间是O(P)O(P)O(P)的,只要题目数据范围大,就死定了。愿意的人欢迎尝试(无100警告)于是,考
- 第十五届吉林省赛个人题解【中档题(不过可能对你来说是简单题)】(H、G、C)
ahardstone
练习题c语言算法c++
文章目录H.VisitthePark(STL)G.MatrixRepair(思维题)C.RandomNumberGenerator(BSGS算法)H.VisitthePark(STL)题意:给你一个无向图,每条边上都有一个数码,然后给你一个路径,每次你必须从Ai走到Ai+1(直接走到,必须相邻),如果有多条路径,你等概率的选择这些路径,这样从头走到尾,你依次把这些数码写下来,得到一个十进制数,现在
- 大步小步法
ephemeral-fever
Crypto算法算法
BSGS大步小步算法(babystepgiantstep,BSGS),是一种用来求解离散对数(即模意义下对数)的算法,即给出ax≡b(modm)a^{x}\equivb\pmod{m}ax≡b(modm)中a,b,ma,b,ma,b,m的值(这里保证a和m互质),求解x。实际上,大步小步算法就是对暴力枚举的一个简单的改进,使用了类似meetinthemiddle的思想。我们把xxx拆成At−BAt
- NOI 数学
dllglvzhenfeng
省选与NOI计算机考研机试程序猿的数学算法青少年趣味编程计算机考研信奥NOI
1、信息论基础信奥中的数学:信息论基础信奥中的数学:信息论基础_青少年趣味编程-CSDN博客2、初等数论NOI数学:原根和指数NOI数学:原根和指数_青少年趣味编程-CSDN博客NOI数学:大步小步(BabyStepGiantStep,BSGS)算法NOI数学:大步小步(BabyStepGiantStep,BSGS)算法_青少年趣味编程-CSDN博客NOI数学:完全数NOI数学:完全数_青少年趣味
- 浅谈BSGS和EXBSGS
某邓_Duck
我的BSGS和各位犇犇的差不多,但是不需要求逆元Luogu[TJOI2007]可爱的质数原题展现题目描述给定一个质数\(p\),以及一个整数\(b\),一个整数\(n\),现在要求你计算一个最小的非负整数\(l\),满足\(b^l\equivn\pmodp\)。
- [密码学] ElGamal加密算法与离散对数
Qtianqi
密码学
文章目录前言离散对数问题ElGamal加密算法算法描述密钥生成加密算法解密算法椭圆曲线群上的ElGamal加密密钥生成加密算法解密算法优势点压缩离散对数问题的困难性穷举搜索法Shanks算法BSGS原理算法描述Pohlig-Hellman算法原理伪代码Pollardρ算法原理伪代码例子指数计算算法原理例子前言ElGamal加密算法是由TaherElGamal于198年提出的一种基于离散对数问题的公
- F. Lunar New Year and a Recursive Sequence(矩阵快速幂+BSGS)
H-w-H
题解codeforces
F.LunarNewYearandaRecursiveSequence题意:给出f1=f2=⋯=fk−1=1f_1=f_2=\cdots=f_{k-1}=1f1=f2=⋯=fk−1=1和b1,b2⋯bkb_1,b_2\cdotsb_kb1,b2⋯bk,还有递推方程fi=fi−1b1fi−2b2⋯fi−kbkf_i=f_{i-1}^{b_1}f_{i-2}^{b_2}\cdotsf_{i-k}^{b
- BSGS(基础篇,题目+详解)
H-w-H
数论
基础篇问题:思路:模板:题目:基础篇问题:给出a,b,pa,b,pa,b,p,其中gcd(a,p)=1gcd(a,p)=1gcd(a,p)=1,求xxx满足ax≡b(modp)a^x\equivb(mod~p)\\ax≡b(modp)思路:设x=Ap−Bx=A\sqrtp-Bx=Ap−B其中A∈[1,p],B∈[0,p]A\in[1,\sqrtp],B\in[0,\sqrtp]A∈[1,p],B∈
- Pohig-Hellman算法求解离散对数问题
国科大网安二班
密码学算法密码数学证明密码学算法
Pohig-Hellman算法求解离散对数问题离散对数(DLP)问题:ax≡b(modp)a^{x}\equivb\pmod{p}ax≡b(modp)ppp是大素数。前面已经介绍了求解离散对数问题的小步大步算法(BSGS)(时间复杂度是O(p)O(\sqrt{p})O(p)),这里介绍另外一种求解光滑阶循环群上的离散对数的方法——Pohig-Hellman方法。事实上,Pohlig-Hellman
- [Bsgs][ExBsgs]小结
Gzb1128
ExBsgsBsgs数论
tip.分解质因数可以只枚举到sqrt,剩下的如果不为1,则一定为某个质数的1次幂。1、Bsgs(要求模数为质数)用于求A^x同余B(modC)的最小正整数x。设m=ceil(sqrt(C)),关于为什么一定在这个范围内有解的证明我不会(逃)。把x看成i*m-j。A^(i*m-j)同余B,对方程进行一些变换,得到A^i*m同余B*A^j.然后枚举j从0到m,存到map里,值为j,再枚举i从1到m,
- [ExBsgs]垃圾计算机
Gzb1128
CRTExBsgs数论小学奥数ExBsgs
第一问快速幂。第二问模数是质数的话用Bsgs,因为不是质数所以用ExBsgs。第三问模数是质数可以Lucas,不是质数所以就在crt的条件下乱搞,考虑一种特殊的求组合数的方法,可以发现在p[i]^c[i]的意义下,阶乘是有循环节的,就考虑拆成若干个循环节,然后那些p[i]次幂的东西就用分配律拆出来,就成为了p[i]的次幂*一个阶乘的形式,然后把拆出来的阶乘递归下去做,就可以在接近log的效率下完成
- bzoj5296 [Cqoi2018]破解D-H协议【BSGS】
OJBFOWE
BSGS模板bzoj
先把a求出来,然后求B^a,即可;已知A≡g^a(modP),求a,设a=i*m-j===>A*(g^j)≡g^i(*m)(modP);枚举i,j==>i的范围为0--->ceil(sqrt(P));j的范围1----->ceii(sqrt(P));先枚举j将A*(g^j)存到map里mp[A*(g^j)]=j;然后枚举i寻找mp[g^(i*m)]不为0的第一个值,就是i的答案==》a=i*m-m
- 原根,BSGS,扩展BSGS,miller_rabbin算法,高斯消元
RBW爸爸
#原根#BSGS#miller_rabbin原根BSGSmiller_rabbin高斯消元
文章目录原根BSGS大步小步算法扩展BSGSmiller_rabbin高斯消元原根如果两个整数a,ba,ba,b互质,则有aϕ(b)%b=1a^{\phi(b)}\%b=1aϕ(b)%b=1定义模bbb意义下的aaa的阶为使ad%b=1a^d\%b=1ad%b=1的最小正整数ddd显然,模bbb的阶d∣ϕ(b)d|\phi(b)d∣ϕ(b)如果模bbb意义下aaa的阶为ϕ(b)\phi(b)ϕ(b
- [Note] 高次剩余 [Cipolla][Peralta][BSGS]
*éphia
高次剩余二次剩余三次剩余CipollaPeraltaBSGSExBSGSExGCD数论同余二项式定理扩域
Lagrange’sTheorem(NumberTheory)nnn次非零多项式在模素数意义下至多有nnn个不同的解。Catalan’sConjecturexp−yq=1(p>1,q>1)x^p-y^q=1(p>1,q>1)xp−yq=1(p>1,q>1)的所有正整数解只有(x,y,p,q)=(3,2,2,3)(x,y,p,q)=(3,2,2,3)(x,y,p,q)=(3,
- Baby Steps Giant Steps(BSGS)及其扩展——杨子曰算法
杨子曰
变态的算法崩溃的数学
BabyStepsGiantSteps(BSGS)及其扩展——杨子曰算法超链接:数学合集又名巴士公司,北上广深,拔山盖世……感叹:中华汉字真是博大精深啊!BSGS他可以干嘛捏?解方程:ax≡b(modp)a^x\equivb\(mod\p)ax≡b(modp)的最小非负整数解,不过a和p是互质滴首先,我来告诉大家一个一个神奇的事实:如果这个方程有解,那么最小解一定在[0,p-1)里想要说明这个事情
- 数学合集——杨子曰数学
杨子曰
崩溃的数学
数学合集——杨子曰数学这两天写了一堆数学的博客,汇总一下:数论:欧几里得算法和扩展欧几里得算法欧拉函数,欧拉定理(费马小定理),扩展欧拉定理的证明和应用逆元中国剩余定理欧拉筛和筛法求欧拉函数BabyStepsGiantSteps(BSGS)及其扩展威尔逊定理证明斐波那契相关:证明gcd(f[n],f[m])=f[gcd(n,m)]快速求斐波那契数列第n项(不使用矩阵快速幂)【洛谷P3938】斐波那
- P4454破解D-H协议
diedunfu1647
Problem传送门给定\(g,P,A,B\),其中\(P\)为质数并且满足:\(g^a=A\\mod\\P\)\(g^b=B\\mod\\P\)求\(g^{a*b}\)Solution又是知道板子直接A系列……用到了BSGS(大步小步法)……还是介绍一下吧……BSGS主要用来解决\(A^x\equivB\(\mod\C)\)已知\(A,B,C\)(其中\(C\)为质数)求\(x\)。具体实现其实
- PHP合并多个数组
beyond__devil
php
代码这东西,好多以前熟悉的东西,不笔记,都忘记了!这也是我写博客的原因!笔记下来,今天再次碰到个简单的问题,居然都不会了...(好久不看基础的原因吧,忘的干干净净...)简述下场景:平常的城市切换:热门城市。北、上、广、深,以及山西、河北的所有城市。城市ID作为键,城市名作为值。$bsgs_citys=['3585'=>'北京','3587'=>'上海','321'=>'广州','323'=>'深
- 洛谷 P3846 [TJOI2007] 可爱的质数 bsgs
Amber_lylovely
BSGS
题目网址:https://www.luogu.com.cn/problem/P3846分析:一道bsgs的模板题。代码:#include#include#include#defineLLlonglongconstintc=1e6+7;usingnamespacestd;intp,b,n;structnode{intx,y;}hash[c];voidins(intx,inty){intt=x%c;w
- 脑洞:整体分块 + BSGS
Entropy Increaser
研究
Ran让EI刷整体二分的题,并且丢给EI一道「ZJOI2013」K大数查询。但是EI并不想写整体二分。也不想写数据结构。于是一拍脑门,就有了这个奇怪的想法。大致思路:对于ccc先离散化,然后考虑一个类似BSGS的找答案的过程:将从大到小的ccc分成M\sqrtMM段,按顺序计算每个询问的区间中有多少个数落在第iii段内的颜色中。该过程发生MMM次修改和Θ(MM)\Theta(M\sqrtM)Θ(M
- bsgs及exbsgs
UnicornXi
数论
bsgsbsgsbsgsAx≡B(modC),gcd(A,C)=1A^x\equivB(mod~C),gcd(A,C)=1Ax≡B(modC),gcd(A,C)=1t=C,x=i∗t−j,Ait−j≡B(modC)t=\sqrt{C},x=i*t-j,A^{it-j}\equivB(mod~C)t=C,x=i∗t−j,Ait−j≡B(modC)Ait≡Aj∗B(modC)A^{it}\equivA
- 浅谈BSGS&exBSGS
lahlah_
数论BSGS
概(che)论(dan)BSGS又称拔山盖世算法BabyStepGiantStep又称求离散对数一般用于给出a,b,pa,b,pa,b,p求ax≡b(modp)a^x\equivb\pmodpax≡b(modp)算法流程比较简单,其实就是分块,小块的暴力预处理,然后一块一块跳借用psk011102的图大概就是这样先丢个板子题吧:代码实现很简单:#include#definelllonglongus
- 暂时性的模板
henu_jizhideqingwa
模版
文章目录KMP快速乘普通版快速版快速幂欧拉函数线性筛欧拉函数线性筛莫比乌斯函数逆元RMQ_STMiller_Rabin线性基异或下的线性基实数下的线性基BigIntfft求高精度快速幂倍增约瑟夫问题中国剩余定理扩展中国剩余定理卢卡斯扩展卢卡斯指数循环BSGS莫比乌斯反演积性函数迪利克雷卷积杜教筛Min_25筛组合数最长公共子序列高斯消元SG函数三分求极值轮廓线dp最长回文串数位dp最长上升子序列(
- 原根和离散对数BSGS求法(高次同余方程)
zjyang12345
—————数论—————筛法解方程
原根&离散对数一.原根1.定义:(a与m互质)使成立的最小的d(记住原根是a,不是d!)2.原根的性质:一般给出p(有时叫m)1.具有原根的数字仅有以下几种形式:,(p是奇质数)2.一个数的最小原根的大小不超过3.原根个数Φ(Φ(m))个,m为质数则原根个数Φ(m-1)3.求解原根的基本步骤:判断一个数是否有原根。(通过性质1,枚举质数即可)求得最小原根。(通过性质2,依次枚举2~判断即可)求出所
- 【学习笔记】Baby Step Giant Step算法及其扩展
changle_cyx
学习笔记
1.引入BabyStepGiantStep算法(简称BSGS),用于求解形如ax≡b(modp)a^x\equivb(mod\p)ax≡b(modp)(a,b,p∈Na,b,p\in\mathbb{N}a,b,p∈N)的同余方程,即著名的离散对数问题。本文分为(a,p)=1(a,p)=1(a,p)=1和(a,p)≠1(a,p)\neq1(a,p)̸=1两种情况讨论。2.方程ax≡b(modp)a^
- POJ-2417 Discrete Logging (BSGS算法,离散对数)
Ccaledd
ACM
DiscreteLoggingTimeLimit:5000MSMemoryLimit:65536KDescriptionGivenaprimeP,2#include#include#include#include#include#defineLL__int64usingnamespacestd;classhash{public:hash(){memset(a,0xff,sizeof(a));//初
- a^b === c (mod p)知二求一: p已知
_duadua
数论知识点
知ab求c求x满足ab≡x(modp),即求x=abmodp快速幂。。。LLpow_mod(LLa,LLb,LLp){LLr=1;a%=p;while(b){if(b&1)r=(r*a)%p;a=(a*a)%p;b>>=1;}returnr;}知ac求b求x满足ax≡c(modp)使用BSGS算法即可=>BabyStepGiantStep(好奇怪的名字)及其扩展:求离散对数知bc求a*求x满足xa
- 【BZOJ】【P3239】【Discrete Logging】【题解】【BSGS】
iamzky
bzoj
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3239裸题Code:#includeusingnamespacestd;typedeflonglongLL;LLp,a,b;LLpw(LLx,LLk,LLp){LLans=1;for(;k;k>>=1){if(k&1)ans=(ans*x)%p;x=(x*x)%p;}returnans;}vo
- [BZOJ 4128]Matrix
__Horizon__
数学--高斯消元。线性基
裸BSGS矩阵求逆。。#includeusingnamespacestd;typedeflonglongll;intn,md;#definemaxn72#definemod13331structMatrix{inta[maxn][maxn];voidread(){for(inti=0;iM;llpower_mod(lla,llb){llret=1;while(b>0){if(b&1)ret=ret
- 【BSGS】POJ2417[Discrete Logging]&POJ3243[Clever Y]题解
ZigZagK
POJ题解BSGS及扩展BSGS
POJ2417题目概述求满足Ax≡B(modC)的最小x,C是素数。解题报告这就是经典的BSGS,由于要求最小的,所以哈希表储存时刷个小的就行了。示例程序#include#include#include#includeusingnamespacestd;typedeflonglongLL;constintMAXINT=((1#include#include#includeusingnamespac
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,