- 学习笔记——BSGS
Young_20220202
学习笔记哈希算法
众所周知,北上广深是中国非常一线的城市,北京是首都,地处……正片开始!一、BSGS基础算法实现目标:Ax≡B(mod P),(gcd(P,A)=1)A^x\equivB(\modP),(\gcd(P,A)=1)Ax≡B(modP),(gcd(P,A)=1)求最小的xxx很明显,如果暴力枚举,时间是O(P)O(P)O(P)的,只要题目数据范围大,就死定了。愿意的人欢迎尝试(无100警告)于是,考
- 第十五届吉林省赛个人题解【中档题(不过可能对你来说是简单题)】(H、G、C)
ahardstone
练习题c语言算法c++
文章目录H.VisitthePark(STL)G.MatrixRepair(思维题)C.RandomNumberGenerator(BSGS算法)H.VisitthePark(STL)题意:给你一个无向图,每条边上都有一个数码,然后给你一个路径,每次你必须从Ai走到Ai+1(直接走到,必须相邻),如果有多条路径,你等概率的选择这些路径,这样从头走到尾,你依次把这些数码写下来,得到一个十进制数,现在
- 大步小步法
ephemeral-fever
Crypto算法算法
BSGS大步小步算法(babystepgiantstep,BSGS),是一种用来求解离散对数(即模意义下对数)的算法,即给出ax≡b(modm)a^{x}\equivb\pmod{m}ax≡b(modm)中a,b,ma,b,ma,b,m的值(这里保证a和m互质),求解x。实际上,大步小步算法就是对暴力枚举的一个简单的改进,使用了类似meetinthemiddle的思想。我们把xxx拆成At−BAt
- NOI 数学
dllglvzhenfeng
省选与NOI计算机考研机试程序猿的数学算法青少年趣味编程计算机考研信奥NOI
1、信息论基础信奥中的数学:信息论基础信奥中的数学:信息论基础_青少年趣味编程-CSDN博客2、初等数论NOI数学:原根和指数NOI数学:原根和指数_青少年趣味编程-CSDN博客NOI数学:大步小步(BabyStepGiantStep,BSGS)算法NOI数学:大步小步(BabyStepGiantStep,BSGS)算法_青少年趣味编程-CSDN博客NOI数学:完全数NOI数学:完全数_青少年趣味
- 浅谈BSGS和EXBSGS
某邓_Duck
我的BSGS和各位犇犇的差不多,但是不需要求逆元Luogu[TJOI2007]可爱的质数原题展现题目描述给定一个质数\(p\),以及一个整数\(b\),一个整数\(n\),现在要求你计算一个最小的非负整数\(l\),满足\(b^l\equivn\pmodp\)。
- [密码学] ElGamal加密算法与离散对数
Qtianqi
密码学
文章目录前言离散对数问题ElGamal加密算法算法描述密钥生成加密算法解密算法椭圆曲线群上的ElGamal加密密钥生成加密算法解密算法优势点压缩离散对数问题的困难性穷举搜索法Shanks算法BSGS原理算法描述Pohlig-Hellman算法原理伪代码Pollardρ算法原理伪代码例子指数计算算法原理例子前言ElGamal加密算法是由TaherElGamal于198年提出的一种基于离散对数问题的公
- F. Lunar New Year and a Recursive Sequence(矩阵快速幂+BSGS)
H-w-H
题解codeforces
F.LunarNewYearandaRecursiveSequence题意:给出f1=f2=⋯=fk−1=1f_1=f_2=\cdots=f_{k-1}=1f1=f2=⋯=fk−1=1和b1,b2⋯bkb_1,b_2\cdotsb_kb1,b2⋯bk,还有递推方程fi=fi−1b1fi−2b2⋯fi−kbkf_i=f_{i-1}^{b_1}f_{i-2}^{b_2}\cdotsf_{i-k}^{b
- BSGS(基础篇,题目+详解)
H-w-H
数论
基础篇问题:思路:模板:题目:基础篇问题:给出a,b,pa,b,pa,b,p,其中gcd(a,p)=1gcd(a,p)=1gcd(a,p)=1,求xxx满足ax≡b(modp)a^x\equivb(mod~p)\\ax≡b(modp)思路:设x=Ap−Bx=A\sqrtp-Bx=Ap−B其中A∈[1,p],B∈[0,p]A\in[1,\sqrtp],B\in[0,\sqrtp]A∈[1,p],B∈
- Pohig-Hellman算法求解离散对数问题
国科大网安二班
密码学算法密码数学证明密码学算法
Pohig-Hellman算法求解离散对数问题离散对数(DLP)问题:ax≡b(modp)a^{x}\equivb\pmod{p}ax≡b(modp)ppp是大素数。前面已经介绍了求解离散对数问题的小步大步算法(BSGS)(时间复杂度是O(p)O(\sqrt{p})O(p)),这里介绍另外一种求解光滑阶循环群上的离散对数的方法——Pohig-Hellman方法。事实上,Pohlig-Hellman
- [Bsgs][ExBsgs]小结
Gzb1128
ExBsgsBsgs数论
tip.分解质因数可以只枚举到sqrt,剩下的如果不为1,则一定为某个质数的1次幂。1、Bsgs(要求模数为质数)用于求A^x同余B(modC)的最小正整数x。设m=ceil(sqrt(C)),关于为什么一定在这个范围内有解的证明我不会(逃)。把x看成i*m-j。A^(i*m-j)同余B,对方程进行一些变换,得到A^i*m同余B*A^j.然后枚举j从0到m,存到map里,值为j,再枚举i从1到m,
- [ExBsgs]垃圾计算机
Gzb1128
CRTExBsgs数论小学奥数ExBsgs
第一问快速幂。第二问模数是质数的话用Bsgs,因为不是质数所以用ExBsgs。第三问模数是质数可以Lucas,不是质数所以就在crt的条件下乱搞,考虑一种特殊的求组合数的方法,可以发现在p[i]^c[i]的意义下,阶乘是有循环节的,就考虑拆成若干个循环节,然后那些p[i]次幂的东西就用分配律拆出来,就成为了p[i]的次幂*一个阶乘的形式,然后把拆出来的阶乘递归下去做,就可以在接近log的效率下完成
- bzoj5296 [Cqoi2018]破解D-H协议【BSGS】
OJBFOWE
BSGS模板bzoj
先把a求出来,然后求B^a,即可;已知A≡g^a(modP),求a,设a=i*m-j===>A*(g^j)≡g^i(*m)(modP);枚举i,j==>i的范围为0--->ceil(sqrt(P));j的范围1----->ceii(sqrt(P));先枚举j将A*(g^j)存到map里mp[A*(g^j)]=j;然后枚举i寻找mp[g^(i*m)]不为0的第一个值,就是i的答案==》a=i*m-m
- 原根,BSGS,扩展BSGS,miller_rabbin算法,高斯消元
RBW爸爸
#原根#BSGS#miller_rabbin原根BSGSmiller_rabbin高斯消元
文章目录原根BSGS大步小步算法扩展BSGSmiller_rabbin高斯消元原根如果两个整数a,ba,ba,b互质,则有aϕ(b)%b=1a^{\phi(b)}\%b=1aϕ(b)%b=1定义模bbb意义下的aaa的阶为使ad%b=1a^d\%b=1ad%b=1的最小正整数ddd显然,模bbb的阶d∣ϕ(b)d|\phi(b)d∣ϕ(b)如果模bbb意义下aaa的阶为ϕ(b)\phi(b)ϕ(b
- [Note] 高次剩余 [Cipolla][Peralta][BSGS]
*éphia
高次剩余二次剩余三次剩余CipollaPeraltaBSGSExBSGSExGCD数论同余二项式定理扩域
Lagrange’sTheorem(NumberTheory)nnn次非零多项式在模素数意义下至多有nnn个不同的解。Catalan’sConjecturexp−yq=1(p>1,q>1)x^p-y^q=1(p>1,q>1)xp−yq=1(p>1,q>1)的所有正整数解只有(x,y,p,q)=(3,2,2,3)(x,y,p,q)=(3,2,2,3)(x,y,p,q)=(3,
- Baby Steps Giant Steps(BSGS)及其扩展——杨子曰算法
杨子曰
变态的算法崩溃的数学
BabyStepsGiantSteps(BSGS)及其扩展——杨子曰算法超链接:数学合集又名巴士公司,北上广深,拔山盖世……感叹:中华汉字真是博大精深啊!BSGS他可以干嘛捏?解方程:ax≡b(modp)a^x\equivb\(mod\p)ax≡b(modp)的最小非负整数解,不过a和p是互质滴首先,我来告诉大家一个一个神奇的事实:如果这个方程有解,那么最小解一定在[0,p-1)里想要说明这个事情
- 数学合集——杨子曰数学
杨子曰
崩溃的数学
数学合集——杨子曰数学这两天写了一堆数学的博客,汇总一下:数论:欧几里得算法和扩展欧几里得算法欧拉函数,欧拉定理(费马小定理),扩展欧拉定理的证明和应用逆元中国剩余定理欧拉筛和筛法求欧拉函数BabyStepsGiantSteps(BSGS)及其扩展威尔逊定理证明斐波那契相关:证明gcd(f[n],f[m])=f[gcd(n,m)]快速求斐波那契数列第n项(不使用矩阵快速幂)【洛谷P3938】斐波那
- P4454破解D-H协议
diedunfu1647
Problem传送门给定\(g,P,A,B\),其中\(P\)为质数并且满足:\(g^a=A\\mod\\P\)\(g^b=B\\mod\\P\)求\(g^{a*b}\)Solution又是知道板子直接A系列……用到了BSGS(大步小步法)……还是介绍一下吧……BSGS主要用来解决\(A^x\equivB\(\mod\C)\)已知\(A,B,C\)(其中\(C\)为质数)求\(x\)。具体实现其实
- PHP合并多个数组
beyond__devil
php
代码这东西,好多以前熟悉的东西,不笔记,都忘记了!这也是我写博客的原因!笔记下来,今天再次碰到个简单的问题,居然都不会了...(好久不看基础的原因吧,忘的干干净净...)简述下场景:平常的城市切换:热门城市。北、上、广、深,以及山西、河北的所有城市。城市ID作为键,城市名作为值。$bsgs_citys=['3585'=>'北京','3587'=>'上海','321'=>'广州','323'=>'深
- 洛谷 P3846 [TJOI2007] 可爱的质数 bsgs
Amber_lylovely
BSGS
题目网址:https://www.luogu.com.cn/problem/P3846分析:一道bsgs的模板题。代码:#include#include#include#defineLLlonglongconstintc=1e6+7;usingnamespacestd;intp,b,n;structnode{intx,y;}hash[c];voidins(intx,inty){intt=x%c;w
- 脑洞:整体分块 + BSGS
Entropy Increaser
研究
Ran让EI刷整体二分的题,并且丢给EI一道「ZJOI2013」K大数查询。但是EI并不想写整体二分。也不想写数据结构。于是一拍脑门,就有了这个奇怪的想法。大致思路:对于ccc先离散化,然后考虑一个类似BSGS的找答案的过程:将从大到小的ccc分成M\sqrtMM段,按顺序计算每个询问的区间中有多少个数落在第iii段内的颜色中。该过程发生MMM次修改和Θ(MM)\Theta(M\sqrtM)Θ(M
- bsgs及exbsgs
UnicornXi
数论
bsgsbsgsbsgsAx≡B(modC),gcd(A,C)=1A^x\equivB(mod~C),gcd(A,C)=1Ax≡B(modC),gcd(A,C)=1t=C,x=i∗t−j,Ait−j≡B(modC)t=\sqrt{C},x=i*t-j,A^{it-j}\equivB(mod~C)t=C,x=i∗t−j,Ait−j≡B(modC)Ait≡Aj∗B(modC)A^{it}\equivA
- 浅谈BSGS&exBSGS
lahlah_
数论BSGS
概(che)论(dan)BSGS又称拔山盖世算法BabyStepGiantStep又称求离散对数一般用于给出a,b,pa,b,pa,b,p求ax≡b(modp)a^x\equivb\pmodpax≡b(modp)算法流程比较简单,其实就是分块,小块的暴力预处理,然后一块一块跳借用psk011102的图大概就是这样先丢个板子题吧:代码实现很简单:#include#definelllonglongus
- 暂时性的模板
henu_jizhideqingwa
模版
文章目录KMP快速乘普通版快速版快速幂欧拉函数线性筛欧拉函数线性筛莫比乌斯函数逆元RMQ_STMiller_Rabin线性基异或下的线性基实数下的线性基BigIntfft求高精度快速幂倍增约瑟夫问题中国剩余定理扩展中国剩余定理卢卡斯扩展卢卡斯指数循环BSGS莫比乌斯反演积性函数迪利克雷卷积杜教筛Min_25筛组合数最长公共子序列高斯消元SG函数三分求极值轮廓线dp最长回文串数位dp最长上升子序列(
- 原根和离散对数BSGS求法(高次同余方程)
zjyang12345
—————数论—————筛法解方程
原根&离散对数一.原根1.定义:(a与m互质)使成立的最小的d(记住原根是a,不是d!)2.原根的性质:一般给出p(有时叫m)1.具有原根的数字仅有以下几种形式:,(p是奇质数)2.一个数的最小原根的大小不超过3.原根个数Φ(Φ(m))个,m为质数则原根个数Φ(m-1)3.求解原根的基本步骤:判断一个数是否有原根。(通过性质1,枚举质数即可)求得最小原根。(通过性质2,依次枚举2~判断即可)求出所
- 【学习笔记】Baby Step Giant Step算法及其扩展
changle_cyx
学习笔记
1.引入BabyStepGiantStep算法(简称BSGS),用于求解形如ax≡b(modp)a^x\equivb(mod\p)ax≡b(modp)(a,b,p∈Na,b,p\in\mathbb{N}a,b,p∈N)的同余方程,即著名的离散对数问题。本文分为(a,p)=1(a,p)=1(a,p)=1和(a,p)≠1(a,p)\neq1(a,p)̸=1两种情况讨论。2.方程ax≡b(modp)a^
- POJ-2417 Discrete Logging (BSGS算法,离散对数)
Ccaledd
ACM
DiscreteLoggingTimeLimit:5000MSMemoryLimit:65536KDescriptionGivenaprimeP,2#include#include#include#include#include#defineLL__int64usingnamespacestd;classhash{public:hash(){memset(a,0xff,sizeof(a));//初
- a^b === c (mod p)知二求一: p已知
_duadua
数论知识点
知ab求c求x满足ab≡x(modp),即求x=abmodp快速幂。。。LLpow_mod(LLa,LLb,LLp){LLr=1;a%=p;while(b){if(b&1)r=(r*a)%p;a=(a*a)%p;b>>=1;}returnr;}知ac求b求x满足ax≡c(modp)使用BSGS算法即可=>BabyStepGiantStep(好奇怪的名字)及其扩展:求离散对数知bc求a*求x满足xa
- 【BZOJ】【P3239】【Discrete Logging】【题解】【BSGS】
iamzky
bzoj
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3239裸题Code:#includeusingnamespacestd;typedeflonglongLL;LLp,a,b;LLpw(LLx,LLk,LLp){LLans=1;for(;k;k>>=1){if(k&1)ans=(ans*x)%p;x=(x*x)%p;}returnans;}vo
- [BZOJ 4128]Matrix
__Horizon__
数学--高斯消元。线性基
裸BSGS矩阵求逆。。#includeusingnamespacestd;typedeflonglongll;intn,md;#definemaxn72#definemod13331structMatrix{inta[maxn][maxn];voidread(){for(inti=0;iM;llpower_mod(lla,llb){llret=1;while(b>0){if(b&1)ret=ret
- 【BSGS】POJ2417[Discrete Logging]&POJ3243[Clever Y]题解
ZigZagK
POJ题解BSGS及扩展BSGS
POJ2417题目概述求满足Ax≡B(modC)的最小x,C是素数。解题报告这就是经典的BSGS,由于要求最小的,所以哈希表储存时刷个小的就行了。示例程序#include#include#include#includeusingnamespacestd;typedeflonglongLL;constintMAXINT=((1#include#include#includeusingnamespac
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR