- 【博士每天一篇论文-综述】Deep Echo State Network (DeepESN)_ A Brief Survey
Better Bench
博士每天一篇文献深度ESNDeepESN深度状态回声网络类脑计算储层计算储备池储备层
阅读时间:2023-11-221介绍年份:2017作者:C.Gallicchio比萨大学计算机科学系终身教授助理教授,A.Micheli,比萨大学计算机科学系期刊:ArXiv引用量:68这是两个大牛的论文,两位作者也是在2017到2018年期间发表了多篇ESN的研究。该文概述了DeepESN(深度回声状态网络)在开发、分析和应用方面的进展。DeepESN是一种专门用于处理时间数据的深度递归神经网络
- 【博士每天一篇论文-技术综述】Machine Learning With Echo State Networks 一篇系统讲解ESN知识的五星文章
Better Bench
博士每天一篇文献机器学习人工智能储层计算储备池reservoir回声状态网络ESN
阅读时间:2023-11-211介绍年份:2020作者:徐元超,曼尼托巴大学期刊:无引用量:无这篇文章是一篇技术报告,从递归神经网络(RNNs)引入到回声状态网络(ESNs)。说明了RNNs的局限性,并引入了储层计算和ESN的概念。非常系统详细的介绍了ESN的数学模型、属性(echostateproperty)、意义、训练方法、深度ESN的以、ESN的应用和局限性、以及未来的研究方向。2创新点这篇
- 【博士每天一篇论文-算法】Optimal modularity and memory capacity of neural reservoirs
Better Bench
博士每天一篇文献模块化神经网络储备池储层计算记忆能力
阅读时间:2023-11-151介绍年份:2019作者:NathanielRodriguez印第安纳大学信息学、计算和工程学院,美国印第安纳州布卢明顿期刊:NetworkNeuroscience引用量:39这篇论文主要研究了神经网络的模块化与记忆性能之间的关系,提出记忆性能存在一个最佳模块化程度,即在局部凝聚性和全局连接性之间建立平衡。这种最佳模块化可以使神经网络具有更长的记忆能力。作者提出从神经
- #每天一篇论文#235/365 DynamicFusion:非刚体场景实时重建与追踪
流浪机器人
每天一篇论文365
DynamicFusion:ReconstructionandTrackingofNon-rigidScenesinReal-Timeprojectwebsite:http://grail.cs.washington.edu/projects/dynamicfusion摘要我们提出了第一个能够实时重建非刚性变形场景的稠密slam系统,通过融合从消费级传感器捕获的rgbd扫描。我们的dynamicf
- 每天一篇论文 271/365 A Framework for Depth Estimation and Relative Localization of Ground Robots Using Com
流浪机器人
每天一篇论文365
AFrameworkforDepthEstimationandRelativeLocalizationofGroundRobotsUsingComputerVision摘要分散式结构中的三维深度估计和相对位姿估计问题是需要多个视觉控制机器人协调的任务中出现的一个具有挑战性的问题。深度估计问题旨在恢复环境的三维信息。相对定位问题包括估计两个机器人之间的相对姿态、感知彼此的姿态或共享感知环境的信息。这
- 每天一篇论文 333/365 Multi-object Monocular SLAM for Dynamic Environments
流浪机器人
每天一篇论文365
Multi-objectMonocularSLAMforDynamicEnvironments每天一篇论文汇总list摘要动态环境下的多体单目SLAM在感知和状态估计方面仍然是一个长期的挑战。尽管存在理论上的解决方案,但实践却滞后,主要原因是缺乏动态参与者的稳健感知和预测模型。动态场景中的多体单目SLAM的典型挑战源于不可观测性问题,因为不可能从移动的单目摄像机中三角化运动对象。在物体运动的限制下
- 每天一篇论文呢 340/365 M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
流浪机器人
每天一篇论文365
M3D-RPN:Monocular3DRegionProposalNetworkforObjectDetectionCodeDetNet:Designbackboneforobjectdetection摘要在三维环境中认识世界是城市自主驾驶的重要组成部分。一般来说,昂贵的激光雷达传感器和立体RGB成像的结合对于成功的3D目标检测算法来说是至关重要的,而单目图像方法的性能则大大降低。我们建议通过将单
- 每天一篇论文302/365 A General and Adaptive Robust Loss Function
流浪机器人
每天一篇论文365
AGeneralandAdaptiveRobustLossFunction摘要给出了Cauchy/Lorentzian,Geman-mccluer,Welsch/Leclerc,广义Charbonnier,Charbonnier/pseudo-Huber/L1-L2和L2损失函数的一个推广。通过引入鲁棒性作为一个连续参数,我们的损失函数允许基于鲁棒损失最小化的算法被推广,从而提高了诸如注册和聚类等
- #每天一篇论文#(217/365)EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
流浪机器人
每天一篇论文365
原文EDVR:基于变卷积神经网络的视频重建摘要视频恢复任务,包括超分辨率、去模糊等,正引起计算机视觉界越来越多的关注。在NTIRE19挑战赛中发布了一个具有挑战性的基准名称DREDS。该方法从两个方面对现有方法提出了挑战:(1)如何在大运动情况下对齐多帧,以及(2)如何有效地融合不同运动和模糊的帧。在这项工作中,我们提出了一个新的视频恢复框架,称为edvr,以解决这些挑战。首先,为了处理大的运动,
- #每天一篇论文246/365 CBAM:卷积块注意力模型
流浪机器人
每天一篇论文365
原文:CBAM:ConvolutionalBlockAttentionModule本文提出了一种新的网络模块,称为卷积块注意模块。由于卷积操作通过将跨通道和空间信息混合在一起来提取信息特征,因此我们采用我们的模块来沿着这两个主要维度强调有意义的特征:通道轴和空间轴。为了实现这一点,我们依次应用信道和空间注意模块(如图1所示),以便每个分支可以分别在信道和空间轴上学习“什么”和“在哪里”要注意。因此
- #每天一篇论文 Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
流浪机器人
论文每天读
Monocular3DObjectDetectionwithPseudo-LiDARPointCloud单目伪激光雷达点云3D目标检测摘要单目3D场景理解任务,例如目标大小估计,车头角度估计和3D位置估计,非常具有挑战性。当前成功的三维场景理解方法需要使用三维传感器。另一方面,基于单一图像的方法性能明显较差。在这项工作中,我们的目标是通过增强基于激光雷达的算法来处理单个图像输入,从而弥合3D传感和
- 每天一篇论文 373/1000 PSEUDO-LIDAR++:ACCURATE DEPTH FOR 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
流浪机器人
每天一篇论文365
论文阅读汇总listPSEUDO-LIDAR++:ACCURATEDEPTHFOR3DOBJECTDETECTIONINAUTONOMOUSDRIVINGCodePseudo-LiDARfromVisualDepthEstimation:BridgingtheGapin3DObjectDetectionforAutonomousDriving本文了一种新的图形传(GCD)播算法,它集成了两种数据模
- #每天一篇论文 256/365 Multi-adversarial Faster-RCNN for Unrestricted Object Detection
流浪机器人
每天一篇论文365
多对抗快速rcnn用于无限制目标检测摘要传统的目标检测方法本质上是假设训练和测试数据是从一个有限制的目标域中采集的,并且代价昂贵。为了减轻域依赖性和繁琐的标记问题,提出了利用足够的标签从辅助源域训练的领域知识来检测非受限环境中的对象。具体来说,我们提出了一个多对抗的快速rcnn(maf)框架,用于无限制目标检测。它本质上解决了特征表示中用于域自适应的域差异最小化问题。本文的优点有三:1)针对图像分
- #每天一篇论文 266/365 A Baseline for 3D Multi-Object Tracking
流浪机器人
每天一篇论文365
3D多目标追踪基准代码MOT数据集处理摘要三维多目标跟踪(MOT)是自动驾驶或辅助机器人等实时应用的重要组成部分。然而,最近的3DMOT作品倾向于更多地关注精确的系统,而较少考虑计算成本和系统复杂性。相比之下,本文提出了一种简单而精确的实时基线3D-MOT系统。使用现成的三维物体探测器从激光雷达点云获得定向的三维边界盒。然后,结合三维卡尔曼滤波和Hun-garian算法进行状态估计和数据关联。尽管
- #每天一篇论文 251/365 SemanticKITTI:一个LIDAR帧语义场景理解的数据集
流浪机器人
每天一篇论文365软件安装
SemanticKITTI:ADatasetforSemanticSceneUnderstandingofLiDARSequences摘要语义场景理解对于各种应用都是非常重要的。特别是,自动驾驶汽车需要对其附近的表面和物体有细致的了解。光探测和测距(lidar)提供精确的环境几何信息,因此是几乎所有自动驾驶汽车传感器套件的一部分。尽管语义场景理解与此应用程序相关,但此任务缺乏基于汽车激光雷达的大型
- 每天一篇论文微习惯 315/365 Self-supervised Object Motion and Depth Estimation from Video/
流浪机器人
每天一篇论文365
Self-supervisedObjectMotionandDepthEstimationfromVideo本文是在深度估计的基础上,加入提前VO估计位姿用于深度估计,实例估计和深度估计结合,尺度模糊处理摘要我们提出了一个自监督学习框架来估计视频中单个物体的运动和单目深度。我们将物体运动建模为6自由度刚体变换。实例分割掩码用于引入对象信息。与预测像素级光流图以模拟运动的方法相比,我们的方法显著减少
- 每天一篇论文 332/365 Visual Semantic SLAM with Landmarks for Large-Scale Outdoor Environment
流浪机器人
每天一篇论文365
VisualSemanticSLAMwithLandmarksforLarge-ScaleOutdoorEnvironment每天一篇论文汇总list[Code](摘要-语义SLAM是自主驾驶和智能代理中的一个重要领域,它能使机器人实现高层次的导航任务,获得简单的认知或推理能力,实现基于语言的人机交互。本文将ORB-SLAM[1]、[2]的三维点云与PSPNet-101[3]卷积神经网络模型的语义
- 每天一篇论文 304/365DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM
流浪机器人
每天一篇论文365
DeepFusion:Real-TimeDense3DReconstructionforMonocularSLAMusingSingle-ViewDepthandGradientPredictions摘要稀疏单目同步定位与映射(SLAM)系统生成的基于关键点的地图对于摄像机跟踪是有用的,但是对于许多机器人任务,可能需要密集的三维重建。涉及深度相机的解决方案在范围和室内空间上都是有限的,基于最小化帧
- 每天一篇论文 327/365 Instance-wise Depth and Motion Learning from Monocular Videos
流浪机器人
每天一篇论文365
每天一篇论文汇总listInstance-wiseDepthandMotionLearningfromMonocularVideos摘要我们提出了一个端到端的联合训练框架,在没有监督的情况下,直接模拟了多个动态物体的6自由度运动、Ego-motion和深度。在我们的框架中使用的唯一注释是一个视频实例分割图,它可以由我们新的自动注释方案进行预测。我们的贡献主要三个方面。首先,我们提出了一个可微的前向
- 每天一篇论文 366~372 一周总结
流浪机器人
1.DeepSnakeforReal-TimeInstanceSegmentationCode 该模型能够达到上述效果的两个原因是:该方法能够处理目标检测模型定位错误的问题所以只需要结合一个轻量级的目标检测模型即可。基于contour的分割比基于pixel-based的分割具有更少的参数,而且没有Decoder过程。 为了增加算法的鲁棒性,DeepSnake算法把传统的对于contour坐标来
- #每天一篇论文#233/365 基于星座的语义slam地图合并
流浪机器人
每天一篇论文365
EfficientConstellation-BasedMap-MergingforSemanticSLAM摘要-slam中的数据关联具有根本性的挑战性,处理好模糊性对于实现现实环境中的稳健操作至关重要。当出现不明确的度量时,保守主义常常要求放弃度量或初始化新的里程碑,而不是冒着不正确关联的风险。为了解决不可避免的“重复”地标,我们提出了一个有效的地图合并框架来检测重复的地标星座,提供了一个高置信
- 每天一篇论文 354/365 Deep Snake for Real-Time Instance Segmentation
流浪机器人
每天一篇论文365
DeepSnakeforReal-TimeInstanceSegmentationCode摘要本文提出了一种基于轮廓的deepsnake方法用于实例的实时分割。与最近一些直接从图像中回归对象边界点坐标的方法不同,deepsnake使用神经网络迭代变形初始轮廓以匹配对象边界,这实现了snake算法的经典思想和基于学习的方法。对于轮廓的结构化特征学习,我们提出在deepsnake中使用循环卷积,与一般
- #每天一篇论文#(224/365)基于rgbd感知的增量式种类发现语义分割
流浪机器人
IncrementalClassDiscoveryforSemanticSegmentationwithRGBDSensing摘要这项工作解决了开放世界语义分割的任务,使用rgbd感知来发现新的语义类。虽然现实世界中的对象类型很多,但现有的语义分割方法都是基于封闭世界的假设,只训练有限数量的对象类。针对一种更开放的方法,我们提出了一种增量学习新类的图像分割方法。该系统首先利用颜色和几何信息对每个r
- #每天一篇论文#232/365 基于计连续对抗学习自监督深度里程
流浪机器人
每天一篇论文365
SequentialAdversarialLearningforSelf-SupervisedDeepVisualOdometry摘要我们提出了一个视觉里程计(vo)的自监督学习框架,该框架结合了连续帧的相关性,并利用了对抗学习的优势。以前的方法将自监督vo作为运动局部结构(sfm)来处理,通过最小化扭曲图像和捕获图像之间的光度损失,从图像对中恢复单个图像的深度和相对姿态。由于单视深度估计是一个不
- #每天一篇论文# 221/365 单目SLAM半稠密3D语义地图
流浪机器人
每天一篇论文365
Semi-Dense3DSemanticMappingfromMonocularSLAM本文要点是将2D语义分割结果通过概率模型,推导到3D地图中,重建了具有语义信息的3D地图摘要计算机视觉中的几何和外观组合已被证明是机器人在各种应用中的一个有前途的解决方案。立体摄像机和rgbd传感器广泛应用于实现快速三维重建和密集的轨迹跟踪。然而,它们缺乏在不同缩放环境(即室内和室外场景)之间无缝切换的灵活性。
- #每天一篇论文# 231/365 orbslam-Atlas:一个鲁邦而精确的多地图系统
流浪机器人
每天一篇论文365
ORBSLAM-Atlas:arobustandaccuratemulti-mapsystem摘要我们提出了一个orbslam-atlas系统,该系统能够处理无限数量的断开子地图,其中包括一个健壮的地图合并算法,能够检测出具有公共区域的子地图,并无缝地融合它们。orbslam的突出鲁棒性和准确性是因为它能够检测关键帧之间的宽基线匹配,并通过非线性优化来利用这些匹配,但它只能处理单个映射。Orbsl
- IOI国家集训队1999-2019年论文集(网盘免费下载链接)
繁凡さん
【ACM—ICPC相关】
ACM-ICPC模板国家集训队1999-2019年最新论文(合集)(文末有网盘下载链接)累死我了(;´д`)ゞ大家跟我每天一篇论文集,一起自闭每一天文末有百度网盘免费链接哦国家集训队1999论文集陈宏:《数据结构的选择与算法效率——从IOI98试题PICTURE谈起》来煜坤:《把握本质,灵活运用——动态规划的深入探讨》齐鑫:《搜索方法中的剪枝优化》邵铮:《数学模型的建立、比较和应用》石润婷:《隐蔽
- 每天一篇论文 369/1000 D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry
流浪机器人
D3VO:DeepDepth,DeepPoseandDeepUncertaintyforMonocularVisualOdometry论文阅读汇总list摘要我们提出D3VO作为一种新的单目视觉测程框架,它利用了深度、姿态和不确定度三个层次上的深度网络。首先,我们提出了一种基于双目视频的自监督单目深度估计网络。特别地,它利用预测亮度变换参数将训练图像对对齐到相似的光照条件。此外,我们对输入图像上像
- 每天一篇论文342/365 Self-Supervised Deep Pose Corrections for Robust Visual Odometry
流浪机器人
每天一篇论文365
Self-SupervisedDeepPoseCorrectionsforRobustVisualOdometryCode摘要提出了一种自监督的深度位姿校正(DPC)网络,该网络将位姿校正应用于视觉里程计估计器以提高其精度。我们没有直接回归帧间姿态变化,而是在先前工作的基础上,使用数据驱动的学习来回归姿态修正,该修正解释了由于违反建模假设而导致的系统误差。我们的自监督公式消除了对六自由度地面真实性
- 每天一篇论文 365/365 Visual Odometry Revisited: What Should Be Learnt?
流浪机器人
Memory-EfficientImplementationofDenseNetsVisualOdometryRevisited:WhatShouldBeLearnt?Code摘要在这项工作中,我们提出了一个单目视觉里程计(VO)算法,利用基于几何的方法和深入学习。大多数具有优异性能的现有VO/SLAM系统都基于几何学,必须针对不同的应用场景进行精心设计。此外,大多数单目系统都存在尺度漂移问题。最
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数