- 机器人学中的数值优化(一)
Big David
数值优化数值优化
Preliminaries0前言最优解x∗x^{*}x∗在满足约束的所有向量中具有最小值。两个基本的假设:(1)目标函数有下界目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须有界(2)目标函数具有有界子区间映射sub-levelsets就是下水平集,此时要求目标函数不能存在当x趋于无穷时函数趋于某个值即下水平集无界,这同样会导致最小值无法用浮点数表示f,
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 机器人中的数值优化进阶|【二】三次样条曲线推导(中)
影子鱼Alexios
algorithm机器人线性代数矩阵
机器人中的数值优化|【自用二】三次样条曲线推导接之前,由于ci=3(ηi+1−ηi)−2Di−Di+1c_i=3(\eta_{i+1}-\eta_i)-2D_i-D_{i+1}ci=3(ηi+1−ηi)−2Di−Di+1因此有c=3[−1100...00−110...000−11...0......000...−11]n×(n+1)η−[2100...00210...00011...0......
- 机器人中的数值优化进阶|【三】三次样条曲线推导(下)
影子鱼Alexios
algorithm机器人
机器人中的数值优化进阶|【三】三次样条曲线推导(下)接之前的内容,现在开始考虑势场函数P(η1,...,ηn−1)=1000∑i=1n−1∑j=0mmax(rj−∣∣ηi−oj∣∣,0)P(\eta_1,...,\eta_{n-1})=1000\sum_{i=1}^{n-1}\sum_{j=0}^{m}\max(r_j-||\eta_i-o_j||,0)P(η1,...,ηn−1)=1000i=
- 机器人中的数值优化进阶|【一】三次样条曲线推导(上)
影子鱼Alexios
algorithm机器人线性代数
机器人中的数值优化进阶|【一】三次样条曲线推导(上)三次样条曲线的定义在三次样条曲线中,样条曲线通过一系列控制点η=[η0,η1,...ηn]\eta=[\eta_0,\eta_1,...\eta_n]η=[η0,η1,...ηn]来实现对样条曲线的生成。控制点意味着样条曲线必然要经过这几个点。对于每一段曲线,都可以由s∈[0,1]s\in[0,1]s∈[0,1]来表征曲线,其定义为pi(s)=a
- isight调用matlab 遗传算法,ISIGHT优化算法分类
冯妥坨
isight调用matlab遗传算法
马上注册,结识更多同行,享用更多资源!您需要登录才可以下载或查看,没有帐号?注册xISIGHT中的单目标优化算法大致可分为以下三类:1数值优化方法数值优化算法通常假定设计空间是单峰,连续且凸的。在isight中提供的数值优化方法有:修正的可行方向法(ModifiedMethodofFeasibleDirections)广义下降梯度法(LargeScaleGeneralizedReducedGrad
- 运筹系列87:julia求解随机动态规划问题入门
IE06
运筹学julia动态规划代理模式
随机动态规划问题的特点是:有多个阶段,每个阶段的随机性互不相关,且有有限个实现值(finiterealizations)具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。我们使用julia的SDDP算法包来求解随机动态规划问题。1.入门案例:LinearPolicyGraph看一个简单的数值优化的例子:我们将其建立为一个N阶段的问题:初始值为M。使用
- 机器人中的数值优化之罚函数法
无意2121
数值优化算法机器人自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1L2-PenaltyMethod1.1等式约束1.2不等式约束2L1-PenaltyMethod3BarrierMethod1L2-PenaltyMethod1.1等式约束对于等式约束,罚函数可以惩罚不满足等式约束的点
- UCB Data100:数据科学的原理和技巧:第十三章到第十五章
绝不原创的飞龙
数据科学python
十三、梯度下降原文:GradientDescent译者:飞龙协议:CCBY-NC-SA4.0学习成果优化复杂模型识别直接微积分或几何论证无法帮助解决损失函数的情况应用梯度下降进行数值优化到目前为止,我们已经非常熟悉选择模型和相应损失函数的过程,并通过选择最小化损失函数的θ\thetaθ的值来优化参数。到目前为止,我们已经通过以下两种方法优化了θ\thetaθ:1.使用微积分对损失函数关于θ\the
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 基于优化的规划方法 - 数值优化基础 Frenet和笛卡尔的转换 问题建模 实现基于QP的路径优化算法
Big David
MotionplanningPlanning模块优化数值优化Frenet问题建模规划算法OSQP
本文讲解基于优化的规划算法,将从以下几个维度讲解:数值优化基础、Frenet与Cartesian的相互转换、问题建模OSQP1数值优化基础1.1优化的概念一般优化问题公式:f(x)f(x)f(x):目标/成本函数xxx:决策变量SSS:可行域|约束集Example:A点是最优值全局最优和局部最优的概念:1.2无约束优化当函数f可微,要成为局部最小值的必要条件是▽f(x)=0\bigtriangle
- 机器人中的数值优化之线性共轭梯度法
无意2121
数值优化算法自动驾驶机器人
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1.无约束优化方法对比2.Hessian-vecproduct3.线性共轭梯度方法的步长编辑4.共轭梯度方向的求解5.线性共轭梯度方法整体流程1.无约束优化方法对比拟牛顿方法和牛顿共轭梯度方法是最优的,实现收敛速率与it
- 拓展进阶:Python 中 Scipy 的优化与拟合
theskylife
数据分析数据挖掘pythonscipy开发语言数据分析
写在开头在我们的Python科学计算之旅中,我们已经学习了Scipy库的基础功能,涉及数学运算、数据处理、统计分析等方面。然而,在实际的数据分析和科学研究中,我们经常面临着需要进一步优化算法和拟合数据的需求。本文将深入研究Scipy中的优化与拟合功能,探讨如何在实际问题中应用这些高级功能。1数值优化在实际的数据分析和科学研究中,我们常常面临着需要最小化或最大化某个目标函数的问题。Scipy的opt
- PSO粒子群算法
竹竹竹~
论文阅读算法
PSO通过最优化算法来自动进行参数搜索。算法基本原理:将鸟群觅食行为、算法原理和融合策略参数搜索对应,如下图:鸟群觅食粒子群算法融合策略参数搜索鸟粒子参数组森林求解空间参数空间食物的量目标函数值优化目标值每只鸟所处位置空间中的一个解(粒子位置)参数空间中的一组参数食物量最多的位置全局最优解最优参数组PSO算法适用性分析:PSO算法是一种随机的、并行的优化算法。优点:不要求被优化函数具有可微、可导、
- 强化学习算法TRPO的理解
北山杉林
算法人工智能强化学习
TrustRegionPolicyOptimization角度一:off-policy重要性采样ImportanceSampling梯度优化角度二:数值优化置信域优化蒙特卡洛近似TRPO算法的全称是TrustRegionPolicyOptimization,即信赖域策略优化。角度一:off-policy通常在强化学习策略梯度训练中,智能体每跟环境做一次完整的交互得到一条蒙特卡洛采样轨迹,策略网络的
- 智能优化算法-Tiki-taka算法Tiki Taka Algorithm(附Matlab代码)
88号技师
智能优化算法算法matlab开发语言启发式算法元启发式
引言本文介绍一种基于足球战术tiki-taka的新颖的运动灵感算法——Tiki-taka算法TikiTakaAlgorithm,TTA,用于数值优化和工程设计。该成果于2020年发表在EngineeringComputations。参考文献Rashid,MohdFadzilFaisaeAb.“Tiki-TakaAlgorithm:aNovelMetaheuristicInspiredbyFootb
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优
KAU的云实验台
MATLAB算法
鲸鱼优化算法(whaleoptimizationalgorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,与其它群体智能优化算法相比,WOA算法结构新颖,控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。WOA算法在面对多变量复杂问题时也存在搜
- 算法工程师护城河
韩师兄_
算法人工智能
目录一、大学打基础二、研究生进阶三、算法工程师护城河四、人生护城河五、小结5.1、35岁前的护城河5.2、35岁后的护城河下面是本人朋友的例子。一、大学打基础我是大学本科是计算机专业。在我上大学的时候,那时候是真的不懂算法人工智能,只是觉得这玩意高大上。学好很多专业课,只是为了拿奖学金,至于有什么用,我也不知道。但是在学期间认真学,多年以后,你一定会感谢当年的自己。例如:《信号系统》、《数值优化》
- 数学建模算法汇总
Believe yourself!!!
matlab数学建模算法动态规划线性代数
优化模型优化模型(1)三要素:决策变量、目标函数、约束单目标优化,多目标优化,数值优化,组合优化_luolang_103的博客-CSDN博客_单目标优化单目标(Single-ObjectiveOptimizationProblem)所评测目标只有一个,只需要根据具体的满足函数条件,求得最值多目标(Multi-objectiveOptimizationProblem)多目标优化问题中,同时存在多个最
- PyTorch入门学习(十四):优化器
不吃花椒的兔酱
PyTorchpytorch学习深度学习
目录一、优化器的重要性二、PyTorch中的深度学习三、优化器的选择一、优化器的重要性深度学习模型通常包含大量的参数,因此训练过程涉及到优化这些参数以减小损失函数的值。这个过程类似于找到函数的最小值,但由于模型通常非常复杂,所以需要依赖数值优化算法,即优化器。优化器的任务是调整模型参数,以最小化损失函数,从而提高模型的性能。二、PyTorch中的深度学习PyTorch是一个流行的深度学习框架,它提
- 机器学习中为什么需要梯度下降_机器学习数值优化入门:梯度下降
weixin_39913141
机器学习中为什么需要梯度下降
今天我们尝试用最简单的方式来理解梯度下降,在之后我们会尝试理解更复杂的内容,也会在各种各样的案例中使用梯度下降来求解(事实上之前线性回归模型中我们已经使用了它),感兴趣的同学欢迎关注后续的更新(以及之前的内容)。梯度下降的原理在数据科学中,我们经常要寻找某个模型的最优解。梯度下降就是数值优化问题的一种方案,它能帮助我们一步步接近目标值。在机器学习过程中,这个目标值往往对应着“最小的残差平方和”(比
- CAD模型旋转和AX=B的数值方法——《数值计算方法》
Dropdrag
线性代数矩阵算法
《数值计算方法》系列总目录第一章误差序列实验第二章非线性方程f(x)=0求根的数值方法第三章CAD模型旋转和AX=B的数值方法第四章插值与多项式逼近的数值计算方法第五章曲线拟合的数值方法第六章数值微分计算方法第七章数值积分计算方法第八章数值优化方法第三章一、算法原理1、CAD模型旋转原理2、三角分解法原理3、雅可比迭代法和高斯-赛德尔迭代法二、实验内容及核心算法代码1、CAD模型旋转原理实现2、三
- 激活函数小结:ReLU、ELU、Swish、GELU等
chencjiajy
深度学习激活函数深度学习
文章目录SigmoidTanhReLULeakyReLUPReLUELUSoftPlusMaxoutMishSwishGELUSwiGLUGEGLU资源激活函数是神经网络中的非线性函数,为了增强网络的表示能力和学习能力,激活函数有以下几点性质:连续且可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。激活函数及其导函数要尽可能的简单,有利于提高网络计算效
- 常见的C/C++开源QP问题求解器
罗伯特祥
▶Algorithm/AIqp
1.qpSWIFTqpSWIFT是面向嵌入式和机器人应用的轻量级稀疏二次规划求解器。它采用带有MehrotraPredictor校正步骤和NesterovTodd缩放的Primal-DualInterioirPoint方法。开发语言:C文档:传送门项目:传送门2.OSQPOSQP(算子分裂二次规划)求解器是一个数值优化包,用于求解以下形式的凸二次规划:minimize12xTPx+qTxsubje
- 机器人中的数值优化(二十一)—— 伴随灵敏度分析、线性方程组求解器的分类和特点、优化软件
慕羽★
数值优化方法机器人人工智能数值优化最优化方法机器学习线性方程组求解器优化软件
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十三、伴随灵敏度分析 伴随灵敏度分析可以避免冗余信息的计算,在下面的例子中,我们想要求解Ax=b1、Ax=b2…Ax
- 机器人中的数值优化(四)—— 线搜索求步长(附程序实现)
慕羽★
数值优化方法机器人人工智能数值优化线搜索求步长机器学习
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 六、线搜索求步长 1、0.618方法 0.618方法方法适合于单峰函数,既具有“高-低-高”形状的函数,然而,在众多问题
- 机器人中的数值优化(二十)——函数的光滑化技巧
慕羽★
数值优化方法机器人最优化方法数值优化机器学习运动规划
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十二、函数的光滑化技巧 1、Infconvolution卷积操作 Infconvolution卷积操作适应于凸函数
- 机器人中的数值优化(十九)—— SOCP锥规划应用:时间最优路径参数化(TOPP)
慕羽★
数值优化方法机器人数值优化最优化方法机器学习锥规划最优路径
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十一、时间最优路径参数化(TOPP) 如果我们有一条二阶连续可微的路径q,现在我们想要机器人去跟踪这个路径,需要给这
- 机器人中的数值优化(十八)—— 锥增广的拉格朗日、半光滑的牛顿方法
慕羽★
数值优化方法机器人机器学习人工智能数值优化最优化方法拉格朗日法牛顿法
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 二十九、锥增广的拉格朗日 我们想要保持问题的凸性,然后找一个g(x)=1的p范数都是强半光滑的。 •所有Lipsch
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(