- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 三生原理m 值的五周期循环是人为设定还是数论内在要求?
葫三生
三生学派算法人工智能机器学习量子计算数学建模
AI辅助创作:三AI辅助创作:生原理中m值的五周期循环(取值范围{0,1,2,3,4})本质上是数论内在要求,其必要性源于素数分布的周期性约束与代数结构的不可突破性,但部分特性受限于当前数学框架的观测维度。具体辩证关系如下:✅一、数论内在性的核心证据模周期对称性约束当m突破5周期(如m=5)时,三生原理的素数生成公式p=3(2n+1)+2(2n+m+1)必然生成合数:例如n=0,m=
- 【Algo】常见组合类数列
CodeWithMe
C/C++c++c语言算法
文章目录常见组合类数列1常见递推/组合类数列1.1基础递推类数列1.2组合数学数列1.3数论/函数类数列1.4图论/路径问题相关数列1.5算法和结构设计常用数列2示例:有规律数列前10项对比表3参考建议常见组合类数列介绍一些常见具有明显数学规律或递推关系的常见组合类数列。1常见递推/组合类数列1.1基础递推类数列Fibonacci数列F(n)=F(n-1)+F(n-2),F(0)=0,F(1)=1
- 数论:互质数的个数
Zephyrtoria
数据结构与算法java算法数论
数论:互质数的个数互质数的个数www.acwing.com/problem/content/4971/a=p1a1p2a2...pmama=p_{1}^{a_1}p_{2}^{a_2}...p_{m}^{a_m}a=p1a1p2a2...pmamab=p1a1bp2a2b...pmamba^{b}=p_{1}^{a_1b}p_{2}^{a_2b}...p_{m}^{a_mb}ab=p1a1bp2a
- 素数5在三生原理和费马数公式中均起临界作用的原因?
葫三生
三生学派机器学习人工智能算法量子计算数学建模
AI辅助创作:问答一:在数学理论中,素数5的“临界作用”在《三生原理》与费马数公式中均具有深刻的数学内涵,这种共性源于其独特的数论性质、结构对称性及计算阈值意义。以下从三个维度展开分析:一、5在《三生原理》中的临界性:阴阳平衡与生成韵律的转折点《三生原理》作为融合《周易》哲学的数论体系,其核心是将“三生万物”动态生成思想转化为素数分布的参数化模型。5的临界性体现在:最小满足阴阳参数联动的奇素数《三
- 算法-数论
cx_2023
算法c++开发语言
C-小红的数组查询(二)_牛客周赛Round95思路:不难看出a数组是有循环的d=3,p=4时,a数组:1、0、3、2、1、0、3、2.......最小循环节为4,即最多4种不同的数d=4,p=6时,a数组:1、5、3、1、5、3.......最小循环节为3d=4,p=10时,a数组:1、5、9、3、7、1、5、9、3、7.......最小循环节为5可以得出,最小循环节T=p/gcd(d,p)an
- 质数表的构建
羊儿~
c算法数据结构c++
前言最近,有很多人问我如何既能保证时间复杂度低又能正确的打出质数表,那么今天,我就给各位读者带来了几种打出质数表的(打表)的方法。1.质数的介绍质数,又称素数,是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除的数。换句话说,质数只有两个正因数:1和它自己。例如,2、3、5、7、11等都是质数。2是最小的质数,也是唯一的偶质数,其他质数都是奇数。质数在数学中具有重要地位,尤其在数论领域
- 使用MATLAB输出给定范围内的所有质数
士兵突击许三多
matlab基础matlab
使用MATLAB输出给定范围内的所有质数后续我将给出一些运用案例在计算机科学与数学中,质数是指仅能被1和其本身整除的自然数,例如2、3、5、7、11等。质数在数论和密码学中有着重要的应用。今天,我们将介绍如何使用MATLAB来生成并输出所有质数。什么是质数?质数是大于1的自然数,且只能被1和它自己整除。例如:2、3、5、7、11、13等都是质数。4、6、8、9、10等不是质数,它们都有其他因子。目
- 巧用数论与动态规划破解包子凑数问题
EtherWanderer
数据结构与算法蓝桥杯职场和发展
题目描述小明想知道包子铺用给定的蒸笼规格能凑出多少种无法组成的包子数目。若无法组成的数目无限,输出INF。输入格式第一行为整数NNN(蒸笼种数)接下来NNN行每行一个整数AiA_iAi(每种蒸笼的包子数)输出格式无法凑出的数目个数,若无限则输出INF问题分析关键条件若所有AiA_iAi的最大公约数(GCD)不为1,则无法组成的数目无限。例如,当所有数均为偶数时,无法组成任何奇数。动态规划思路当GC
- 解析数论基础:第二十四章 (s)与L(s,x)的阶估计
AI天才研究院
AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第二十四章(s)与L(s,x)的阶估计作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来数论是数学的一个分支,研究整数和它们的性质。在数论中,(s)函数和L(s,x)函数是两个重要的函数,它们在解析数论、数论分析以及许多数学物理领域都有着广泛的应用。特别是在素数分布、素数定理以及黎曼ζ函数的研究中,(s)函数和
- 探索 C++ 中的数论世界:从基础到实践
光の
java算法开发语言搜索算法
一、引言数论作为数学的核心分支,在计算机科学领域展现出强大的生命力。无论是密码学中的RSA加密算法,还是编程竞赛中的算法优化,数论都扮演着不可或缺的角色。C++凭借其高效的性能和底层控制能力,成为实现数论算法的理想选择。本文将带您走进C++数论的世界,从基础概念到实际应用,逐步揭开数论的神秘面纱。二、数论基础概念与C++实现2.1质数判定质数是大于1且只能被1和自身整除的整数。在C++中,我们可以
- USST新生训练赛3KLMN
Fighter_sky
题解C++acm
题解前言题解部分KPashmakandParmida'sproblem(1800)题目大意题解参考代码LPashmakandGraph(1900)题目大意题解参考代码MLuckyChains(1600)题目大意题解参考代码NManipulatingHistory(1600)题目大意题解参考代码前言KLMN是数据结构(线段树/树状数组)+dp+数论+结论唐题题解部分KPashmakandParmid
- 数论:数学王国的密码学
菜鸟破茧计划
密码学
在计算机科学的世界里,数论就像是一把神奇的钥匙,能够解开密码学、算法优化、随机数生成等诸多领域的谜题。作为C++算法小白,今天我就带大家一起走进数论的奇妙世界,探索其中的奥秘。什么是数论?数论是纯粹数学的分支之一,主要研究整数的性质。在计算机科学中,数论尤其在密码学、算法设计和计算机安全等领域有着广泛的应用。数论中的一些基本概念包括质数、最大公约数、模运算等。数论的基本概念与代码实现质数判定质数是
- 数论专题R1(线性筛专题)
JL24zyl
c++
目录A反素数加强版B约数积函数Ch(n)Dg(n)E神必的函数F球与盒子总结A反素数加强版时空限制1s,32MB问题描述如果一个大于等于1的正整数n,满足所有小于n且大于等于1的所有正整数的约数个数都小于n的约数个数,则n是一个反素数。请你计算不大于n的最大反素数。输入格式第一行输入数据组数T,每组数据输入1个正整数n。输出格式对每组数据,输出不大于n的最大反素数。数据范围1=1)的约数个数为(r
- 为什么哈希加密后破解怎么难?单向函数;密码学的数学原理:从理论到实践
小胡说技书
#数据安全技术哈希算法密码学算法单向函数数据安全安全信息安全
文章目录一、单向函数的数学基础1.1单向函数的数学定义1.2复杂度理论视角1.3数论在密码学中的应用二、哈希函数的数学原理与不可逆性2.1从信息论角度理解哈希不可逆性2.2碰撞抵抗的数学分析2.3单向压缩函数与雪崩效应三、非对称密码系统的数学基础3.1RSA算法的数学原理3.2椭圆曲线加密的几何解析四、密码学随机性与熵的数学原理4.1随机性与熵的量化4.2伪随机数生成器的数学模型4.3加盐哈希的数
- “即时取模”的快读 → 数论
hnjzsyjyj
信息学竞赛#算法数学基础#快读“即时取模”的快读快读
【“即时取模”的快读】●“即时取模”的快读是一种在输入大整数时直接进行取模运算的优化技术,常用于处理需要大数运算但最终结果需取模的场景(如数论题目)。其核心思想是在逐位读取数字时同步计算模值,避免存储完整的大数。intread(){//fastreadintx=0,f=1;charc=getchar();while(c'9'){//!isdigit(c)if(c=='-')f=-1;c=getch
- 【算法笔记】ACM数论基础模板
寂空_
算法笔记算法笔记c++
目录几个定理唯一分解定理鸽巢原理(抽屉原理)麦乐鸡定理哥德巴赫猜想容斥原理例题二进制枚举解dfs解裴蜀定理例题代码最大公约数、最小公倍数最大公约数最小公倍数质数试除法判断质数分解质因数筛质数朴素筛法(埃氏筛法)线性筛法(欧拉筛法)约数试除法求约数求约数个数一个数求约数个数求1~n所有数的约数个数O(nlogn)O(nlogn)O(nlogn)筛法O(n)O(n)O(n)筛法约数之和一个数求约数之和
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 《夜深人静写算法》数论篇 - (10) 扩展欧几里得定理
英雄哪里出来
《夜深人静写算法》数论篇算法初等数论扩展欧几里得定理
前言 通过扩展欧几里得定理,利用扩展欧几里得算法,可以求解线性同余方程。 那么什么是线性同余方程?什么是扩展欧几里得定理?什么是扩展欧几里得算法?接下来的几篇文章会来讲解一下这几个概念。一、扩展欧几里得定理1、定理概述 对于不都为零的整数aaa和b
- 【ICPC】The 2024 ICPC Kunming Invitational Contest E
浅慕Antonio
算法竞赛开发语言c++算法
RelearnthroughReview#数论#枚举#gcd题目描述Givenanintegersequencea1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,anoflengthnnnandanon-negativeintegerkkk,youcanperformthefollowingoperationatmostonce:Choosetwointegerslllan
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 初等数论 课堂笔记 第三章 -- 欧拉函数一节的若干练习
此账号已停更
初等数论数学数论
练习计算φ(60)\varphi\left(60\right)φ(60)。解 将606060写成标准分解式60=22×3×560={{2}^{2}}\times3\times560=22×3×5法一(计算过程中出现分式)φ(60)=60×(1−12)(1−13)(1−15)=60×12×23×45=16\varphi\left(60\right)=60\times\left(1-\frac{1}
- 【关于数学】感悟(附学习目录)
DataPlayerK
线性代数抽象代数概率论矩阵
一些感悟数学具有艺术美。从某种意义上来说,数学家和画家本质相同,他们都在“刻画”心目中的图景。小时候我总是在思考一个终极问题:数学是什么?我怀念那时我单纯而热烈的执着,此文章就长期记载我对数学的看法吧。2017-2020高中在读数学是不同精巧结构的集合。高中数学竞赛中,不等式/组合数学/数论中充斥着各种“限制下的精巧结构”,使得结构出现了各种各样奇妙的性质。2021-4-14大一在读数学不仅重在结
- NOIP2009提高组.Hankson的趣味题
Ayanami_Reii
算法c++笔记蓝桥杯
目录题目算法标签:数论,最大公约数,最小公倍数,约数思路代码题目200.Hankson的趣味题算法标签:数论,最大公约数,最小公倍数,约数思路因为[x,a0]=b1[x,a_0]=b_1[x,a0]=b1因此xxx一定是b1b_1b1约数,注意到,数据范围是2×1092\times10^92×109如果直接使用试除法计算约数时间复杂度是O(nn)O(n\sqrtn)O(nn)会超时,因此需要进行优
- 数论---求组合数
@松田
算法c++组合数数论
快速幂:数论-----快速幂-CSDN博客快速幂求逆元:数论----快速幂求逆元-CSDN博客筛质数:筛质数----CSDN博客求组合数I//10万组a,busingnamespacestd;constintN=2010,mod=1e9+7;intc[N][N];voidinit(){for(inti=0;i>n;while(n--){inta,b;cin>>a>>b;coutusingnames
- 线性筛法求素数(欧拉筛法)(求质数,O(n)时间复杂度)(外加求每个整数的最小质因子)(python)
不染_是非
算法pythonpython算法开发语言
前言:python中求质数的方法有好几种,这里就讲解时间复杂度最低的算法欧拉筛法,时间复杂度为O(n),这是数论中也是算法比赛中必须掌握的方法。本篇博客还会额外讲解求每个整数的最小质因子,什么是质因子?顾名思义,就是是质数的因子,求这个有什么用呢?下篇博客X的因子链(数论,python)(算术基本定理)(欧拉筛法)会给大家讲解一道例题,在例题中讲解它的用法。思路:线性筛法的整体思路是(代码里有详细
- 解析数论基础:问题的提出和进展
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:问题的提出和进展作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来数论,作为数学的一个分支,自古以来就与算法和密码学紧密相连。从古代的算术运算到现代的计算机科学,数论问题始终是算法设计和理论分析的重要基础。随着计算机技术的发展,数论在加密算法、网络安全、计算机图形学、算法优化等领域发挥着越来越重要的作用。1.2
- 了解倒数的概念,乘法逆元就很好理解——解析之【逆元的概念】【逆元的求解方法】
灰阳阳
算法算法裴蜀定理欧几里得算法最大公约数逆元
目录前言一、逆元的概念1、基本定义示例1:a=3,m=7a=3,m=7a=3,m=7示例2:a=2,m=5a=2,m=5a=2,m=52、乘法逆元有什么用3、相关性质二、求解逆元的方法1、费马小定理求乘法逆元定义费马小定理求逆元的方法总结模板题2、扩展欧几里得算法求逆元定义扩展欧几里得算法求逆元的方法总结模板题3、递推公式求逆元定义递推公式的推导示例总结前言首先,下面讨论的是数论相关内容。主要研究
- 【算法】数论基础——逆元的概念与应用 python
查理零世
算法python
文章目录前言一、什么是逆元?二、逆元的存在条件三、如何计算逆元?1.扩展欧几里得算法(ExtendedEuclideanAlgorithm)2.使用费马小定理(Fermat'sLittleTheorem)四、应用场景示例:求排列数和组合数前言逆元(ModularMultiplicativeInverse)在模运算中是一个非常重要的概念,特别是在需要执行除法操作时。因为在模p的情况下,直接进行除法是
- NOIP2013 提高组.转圈游戏
Ayanami_Reii
c++算法笔记
目录题目算法标签:数论,模运算思路代码题目504.转圈游戏算法标签:数论,模运算思路看题意不难看出,计算的是(x+10k×m)mod n(x+10^k\timesm)\modn(x+10k×m)modn,如果直接计算一定会超时,因此可以使用快速幂进行优化代码#include#include#includeusingnamespacestd;typedeflonglongLL;intn,m,k,x
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo