ACM数论1--素数筛

ACM数论1–素数筛

直接上优秀一点的筛法

1.埃筛—埃拉托斯特尼筛法,或者叫埃氏筛法

原理:如果找到一个质数那么他的倍数都不是质数
实现方法:用一个长度为N+1的bool数组保存信息,先假设所有的数都是素数(初始化为true),从第一个素数2开始,把2的倍数都标记为非素数(置为false),一直到大于N;然后进行下一趟,找到2后面的下一个素数3,进行同样的处理,直到最后,数组中依然为true的数即为素数。
说明:整数1特殊处理即可。
直接上代码好了

#include

const int N = 100000 + 5;
bool prime[N];

void init()
{
    for(int i = 2; i < N; i++)
        prime[i] = true;
    for(int i = 2; i*i < N; i++)
    {
        if(prime[i])
            for(int j = i*i; j < N; j += i){ // j += i 是表示 i 的倍数
                prime[j] = false;
            }
    }
}

int main()
{
    init();
    for(int i = 2; i < N; i++)
        if(prime[i])
            printf("%d ", i);
    return 0;
}

这里因为如6同时被2和3标记过,所以不是O(n),而是O(n loglogn)

2.线筛(这是一个O(n)的算法)

这个算法可以保证每个合数是被它最小的质因数筛去,所以可以O(n)

#include
const int N = 100000 + 5;
bool prime[N];//prime[i]表示i是不是质数
int p[N], tot;//p[N]用来存质数
void init(){
    for(int i = 2; i < N; i ++) prime[i] = true;//初始化为质数
    for(int i = 2; i < N; i++){
        if(prime[i]) p[tot ++] = i;//把质数存起来
        for(int j = 0; j < tot && i * p[j] < N; j++){
            prime[i * p[j]] = false;
            if(i % p[j] == 0) break;//保证每个合数被它最小的质因数筛去
        }
    }
}
int main(){
    init();
}

基于埃筛的几个预处理 :

1.质因数

#include
#include
#include
using namespace std;

const int N = 100005;
vector prime_factor[N];

void prime_factor_init()
{
	for(int i = 2; i < N; i++)
	{
		if(prime_factor[i].size() == 0)
		{	
			for(int j = i; j < N; j += i)
				prime_factor[j].push_back(i);
		}
	}
}

2.因数

#include
#include
#include
using namespace std;

const int N = 100005;
vector factor[N];

void factor_init()
{
	for(int i = 2; i < N; i++)
	{
		for(int j = i; j < N; j += i)
			factor[j].push_back(i);
	}
}

3.质因数分解(分解为质因数)

#include
#include
#include
using namespace std;

const int N = 100005;
vector prime_factor_decompostion[N];

void prime_factor_decompostion_init()
{
	int temp;
	for(int i = 2; i < N; i++)
	{
		if(prime_factor[i].size() == 0)
		{	
			for(int j = i; j < N; j += i)
			{
				temp = j;
				while(temp % i == 0)
				{
					prime_factor_decompostion[i].push_back(i);
					temp /= i;
				}
			}
		}
	}
}

你可能感兴趣的:(数论)