- 基于图神经网络的动态物化视图管理
KaiwuDB 数据库
人工智能
本期PaperReading主要介绍了发布于2023年ICDE的论文《DynamicMaterializedViewManagementusingGraphNeuralNetwork》,该文研究了动态物化视图管理问题,提出了一个基于GNN的模型。在真实的数据集上的实验结果表明,取得了更高的质量。一、背景物化视图(MaterializedViews,下文简称MVs)在数据库管理系统中起着至关重要的作
- 【PaperReading】3. PTP
页页读
大模型人工智能PTPmodel多模态大模型
CategoryContent论文题目Position-guidedTextPromptforVision-LanguagePre-trainingCode:ptp作者AlexJinpengWang(SeaAILab),PanZhou(SeaAILab),MikeZhengShou(ShowLab,NationalUniversityofSingapore),ShuichengYan(SeaAIL
- 【PaperReading】4. TAP
页页读
大模型人工智能多模态大模型
CategoryContent论文题目TokenizeAnythingviaPrompting作者TingPan,LuluTang,XinlongWang,ShiguangShan(BeijingAcademyofArtificialIntelligence)发表年份2023摘要提出了一个统一的可提示模型,能够同时对任何事物进行分割、识别和描述。与SAM不同,我们的目标是通过视觉提示在野外构建一个
- 【PaperReading】2. MM-VID
页页读
大模型多模态模型MM-vid
CategoryContent论文题目MM-VID:AdvancingVideoUnderstandingwithGPT-4V(ision)作者KevinLin,FaisalAhmed,LinjieLi,Chung-ChingLin,EhsanAzarnasab,ZhengyuanYang,JianfengWang,LinLiang,ZichengLiu,YumaoLu,CeLiu,LijuanW
- ZKP zkDT (PaperReading)
Simba17
PaperReading零知识证明零知识证明笔记论文阅读
zkDT(CCS’20)PaperReadingZhang,Jiaheng,etal.“Zeroknowledgeproofsfordecisiontreepredictionsandaccuracy.”Proceedingsofthe2020ACMSIGSACConferenceonComputerandCommunicationsSecurity.2020.AbstractInthispape
- AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion
努力学图像处理的小菜
Low-level扩散模型人工智能
AutoDIR:AutomaticAll-in-OneImageRestorationwithLatentDiffusion(Paperreading)YitongJiang,TheChineseUniversityofHongKong,arXiv23,Code,Paper1.前言我们提出了一种具有潜在扩散的一体化图像恢复系统,名为AutoDIR,它可以自动检测和恢复具有多种未知退化的图像。我们的
- Image Super-Resolution with Text Prompt Diffusion
努力学图像处理的小菜
Low-level扩散模型prompt计算机视觉人工智能
ImageSuper-ResolutionwithTextPromptDiffusion(Paperreading)ZhengChen,ShanghaiJiaoTongUniversity,arXiv23,Code,Paper1.前言受多模态方法和文本提示图像处理进步的启发,我们将文本提示引入图像SR,以提供退化先验。具体来说,我们首先设计了一个文本图像生成管道,通过文本退化表示和退化模型将文本集
- CONTROLLING VISION-LANGUAGE MODELS FOR MULTI-TASK IMAGE RESTORATION
努力学图像处理的小菜
Low-level图像处理扩散模型语言模型人工智能自然语言处理
CONTROLLINGVISION-LANGUAGEMODELSFORMULTI-TASKIMAGERESTORATION(Paperreading)ZiweiLuo,UppsalaUniversity,ICLRunderreview(6663),Cited:None,Stars:350+,Code,Paper.1.前言像CLIP这样的视觉语言模型已经显示出对零样本或无标签预测的各种下游任务的巨大
- GNN3.1 GCN (PaperReading&Implementation)
Simba14
PaperReading图神经网络笔记人工智能
GNN学习笔记GNN从入门到精通课程笔记3.1GCN(ICLR'17)Semi-supervisedClassificationwithGraphConvolutionalNetwork(ICLR'17)AbstractWepresentascalableapproachforsemi-supervisedlearningongraph-structureddatathatisbasedonane
- RPKI IRR Hygiene in the RPKI Era (Paper Reading)
Simba14
计算机网络PaperReadingRPKI计算机网络笔记
RPKI-IRRHygieneintheRPKIEra(PaperReading)Noteofpaper“IRRHygieneintheRPKIEra”(PAM'22)IntroductionIRR&RPKIImproveroutingsecurityintheBorderGatewayProtocol(BGP)byallowingnetworkstoregisterinformationandd
- ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting
努力学图像处理的小菜
计算机视觉人工智能深度学习
ResShift:EfficientDiffusionModelforImageSuper-resolutionbyResidualShifting(Paperreading)ZongshengYue,S-Lab,NanyangTechnologicalUniversity,NeurIPS23,Cited:0,Code,Paper1.前言基于扩散的图像超分辨率(SR)方法由于需要数百甚至数千个采样
- Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
努力学图像处理的小菜
扩散模型Tricks图像处理人工智能深度学习计算机视觉
DiffusionAutoencoders:TowardaMeaningfulandDecodableRepresentation(Paperreading)KonpatPreechakul,VISTEC,Thailand,CVPR22Oral,Cited:117,Code,Paper1.前言扩散概率模型(DPM)在图像生成方面取得了显着的质量,可与GAN相媲美。但是与GAN不同,DPM使用一组潜
- Denoising Diffusion Autoencoders are Unified Self-supervised Learners
努力学图像处理的小菜
计算机视觉深度学习
DenoisingDiffusionAutoencodersareUnifiedSelf-supervisedLearners(Paperreading)WeilaiXiang,BeihangUniversity,arXiv23,Code,Paper1.前言受最近扩散模型进展的启发,这让人想起去噪自编码器,我们研究了它们是否可以通过生成预训练获得分类的判别表示。本文表明扩散模型中的网络,即去噪扩散
- Learning Invariant Representation for Unsupervised Image Restoration
努力学图像处理的小菜
图像处理Low-level人工智能计算机视觉深度学习
LearningInvariantRepresentationforUnsupervisedImageRestoration(Paperreading)WenchaoDu,SichuanUniversity,CVPR20,Cited:63,Code,Paper1.前言近年来,跨域传输被应用于无监督图像恢复任务中。但是,直接应用已有的框架,由于缺乏有效的监督,会导致翻译图像出现域漂移问题。相反,我们
- 重读GPDB 和 TiDB 论文引发的 HTAP 数据库再思考
阿福Chris
Greenplum使用TiDB数据库GreenplumTiDB
为什么要再思考?大家好,我是阿福,之前我在社区PaperReading活动中分享了Greenplum团队在2021年SIGMOD上发表的论文:《Greenplum:AHybridDatabaseforTransactionalandAnalyticalWorkloads》。该篇论文,针对传统分析型数据库产品(OLAPRDBMS)Greenplum,通过解决一系列TP场景下的高代价计算问题,比如“分
- TiDB 论文引发的 HTAP 数据库再思考
TiDB 社区干货传送门
tidb数据库
作者:阿福Chris原文来源:https://tidb.net/blog/edacd590为什么要再思考?大家好,我是阿福,之前我在社区PaperReading活动中分享了Greenplum团队在2021年SIGMOD上发表的论文:《Greenplum:AHybridDatabaseforTransactionalandAnalyticalWorkloads》-https://asktug.com
- 一文详解数据库 MVCC
zhisheng_blog
数据库javamysqlxhtmlwebgl
点击上方"zhisheng"关注,星标或置顶一起成长Flink从入门到精通系列文章很多开发者都熟悉InnoDB中的MVCC(Multi-VersionConcurrencyControl)。在应用层面,通过维护多版本的数据,可以提高并行事务数,且不影响各事务的可串行性。本次PaperReading的论文出自2017年VLDB:《AnEmpiricalEvaluationofIn-MemoryMul
- Paper Reading【1】:Widar2.0: Passive Human Tracking with a Single Wi-Fi Link
Genuine:)
matlab算法信息与通信信号处理
PaperReading【1】:Widar2.0:PassiveHumanTrackingwithaSingleWi-FiLink前言Abstract1INTRODUCTION2OVERVIEW3MOTIONINCSI3.1CSI-MotionModel3.2JointMultipleParameterEstimation3.3CSICleaning4LOCALIZATION4.1PathMatc
- Paperreading:ChatGPT is not all you need. A State of the Art Review of large Generative AI models
阿花小朋友
生成ai人工智能python深度学习自然语言处理
ChatGPTisnotallyouneed.AStateoftheArtReviewoflargeGenerativeAImodels最先进的大型AI生成模型综述原文链接Abstract在过去两年中,已经发布了大量大型生成模型,例如ChatGPT或StableDiffusion。具体而言,这些模型能够执行诸如通用问答系统或自动创建艺术图像等任务,这些任务正在彻底改变多个领域。因此,这些生成模型对
- 本地部署体验LISA模型(LISA≈图像分割基础模型SAM+多模态大语言模型LLaVA)
热水过敏
项目记录python计算机视觉图像处理交互pytorch自然语言处理
GitHub地址:https://github.com/dvlab-research/LISA该项目论文paperreading:https://blog.csdn.net/Transfattyacids/article/details/132254770在GitHub上下载源文件,进入下载的文件夹,打开该地址下的命令控制台,执行指令:pipinstall-rrequirements.txtpip
- Tiny-Attention Adapter: Contexts Are More Important Than the Number of Parameters
努力学图像处理的小菜
Tricks深度学习
Tiny-AttentionAdapter:ContextsAreMoreImportantThantheNumberofParameters(Paperreading)HongyuZhao,UniversityofChicago,EMNLP2022,Cited:3,Code:None,Paper1.前言Adapter-tuning是一种范式,通过添加和调整少量新参数,将预训练语言模型转移到下游任
- Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification
努力学图像处理的小菜
Tricks人工智能计算机视觉深度学习
Tip-Adapter:Training-freeAdaptionofCLIPforFew-shotClassification(Paperreading)RenruiZhang,ShanghaiAILaboratory,ECCV2022,Cited:45,Code,Paper1.前言对比式视觉-语言预训练,也称为CLIP,通过大规模的图像-文本对来学习视觉表示,为zero-shot知识迁移展示了
- [GAN] 使用GAN网络进行图片生成的“调参人”入门指南——生成向日葵图片
驼同学.
生成式网络生成对抗网络神经网络人工智能mindspore
[GAN]使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片文章目录[GAN]使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片1.写在前面:1.1应用场景:1.2数据集情况:1.3实验原理讲解和分析(简化版,到时候可以出一期深入的PaperReading)1.4一些必要的介绍2.重要实验代码:2.1一些相关的数据预处理2.2生成器和判别器2.3损失函数计算2.4训练和反向传播
- 今晚 7 点半 | SUFS: 存储资源使用量预测服务
KaiwuDB
KaiwuDB
线上沙龙-PaperReading第6期营业啦本期直播看点本期论文>>《SUFS:AGenericStorageUsageForecastingServiceThroughAdaptiveEnsembleLearning》论文提出了一个增强的LSTM神经网络和自适应的模型集成算法,为不同的存储系统提供统的存储资源使用量预测服务,该方法的准确率在多个真实生产环境的存储系统中得到了验证。为什么选择本期
- SUFS: 存储资源使用量预测服务
KaiwuDB
KaiwuDB
线上沙龙-PaperReading第6期营业啦06月27日(周二)19:30KaiwuDB-B站直播间本期论文>>《SUFS:AGenericStorageUsageForecastingServiceThroughAdaptiveEnsembleLearning》论文提出了一个增强的LSTM神经网络和自适应的模型集成算法,为不同的存储系统提供统一的存储资源使用量预测服务,该方法的准确率在多个真实
- LayoutTransformer: Layout Generation and Completion with Self-attention
努力学图像处理的小菜
机器学习人工智能深度学习
LayoutTransformer:LayoutGenerationandCompletionwithSelf-attention(Paperreading)KamalGupta,UniversityofMaryland,US,Cited:41,Code,Paper1.前言我们解决了在各种领域中(如图像、移动应用、文档和3D对象)进行场景布局生成的问题。大多数复杂场景,无论是自然场景还是人工设计的
- TextDiffuser: Diffusion Models as Text Painters
努力学图像处理的小菜
扩散模型图像处理人工智能深度学习计算机视觉
TextDiffuser:DiffusionModelsasTextPainters(Paperreading)JingyeChen,HKUST,HK,arXiv2023,Cited:0,Code,Paper1.前言扩散模型因其出色的生成能力而受到越来越多的关注,但目前在生成准确连贯的文本方面仍存在困难。为了解决这个问题,我们引入了TextDiffuser,重点是生成具有视觉吸引力的文本,并且与背
- Guided Diffusion/Diffusion Models Beat GANs on Image Synthesis (Paper reading)
努力学图像处理的小菜
图像处理扩散模型pythonpython算法人工智能计算机视觉深度学习
GuidedDiffusion/DiffusionModelsBeatGANsonImageSynthesis(Paperreading)PrafullaDhariwal,OpenAI,NeurlPS2021,Cited:555,Code,Paper.目录子GuidedDiffusion/DiffusionModelsBeatGANsonImageSynthesis(Paperreading)1.
- An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion
努力学图像处理的小菜
图像处理扩散模型Tricks计算机视觉人工智能深度学习
AnImageisWorthOneWord:PersonalizingText-to-ImageGenerationusingTextualInversion(Paperreading)RinonGal,Tel-AvivUniversity,Israel,arXiv2022,Cited:182,Paper,Code1.前言文本到图像的模型为通过自然语言引导创作提供了前所未有的自由。然而,目前尚不清
- GlyphControl: Glyph Conditional Control for Visual Text Generation
努力学图像处理的小菜
扩散模型计算机视觉人工智能深度学习
GlyphControl:GlyphConditionalControlforVisualTextGeneration(Paperreading)YukangYang,MicrosoftResearchAsia,arXiv2023,Cited:0,Code,Paper1.前言最近,人们对开发基于扩散的文本到图像生成模型的兴趣日益增长,这些模型能够生成连贯且形式良好的视觉文本。在本文中,我们提出了一
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla