原文:https://blog.csdn.net/weixin_35695879/article/details/86716796 ,
仅为转载学习收藏
本文参考Autoware_wiki_overview,主要描述了Autoware的整体框架和模块描述,主要包括感知和规划两大部分。
感知包括定位模块,检测模块,预测模块。定位模块使用3D map和SLAM算法来实现,辅助以GNSS和IMU传感器。检测模块使用摄像头和激光雷达,结合传感器融合算法和深度学习网络进行目标检测。预测模块使用定位和检测的结果来预测跟踪目标。
规划模块主要是基于感知的输出结果,进行全局路径规划和局部路径规划。全局路径规划在车辆启动或重启的时候被确定,局部路径根据车辆的状态进行实时更新。例如,如果车辆在障碍物前或停止线前,车辆状态变为“stop”,那么车辆的速度就被规划为0。如果车辆遇到一个障碍物且状态为“avoid”,那么局部跟踪路径就会被重新规划绕过障碍物。主要模块如下所示:
此框图十分重要,是autoware的运行流程,对其整体构架理解很重要。
1.1 Localization
lidar_localizar 计算车辆当在全局坐标的当前位置(x,y,z,roll,pitch,yaw),使用LIDAR的扫描数据和预先构建的地图信息。autoware推荐使用正态分布变换(NDT)算法来匹配激光雷达当前帧和3D map。
gnss_localizer 转换GNSS接收器发来的NEMA消息到位置信息(x,y,z,roll,pitch,yaw)。结果可以被单独使用为车辆当前位置,也可以作为lidar_localizar的初始参考位置。
dead_reckoner 主要使用IMU传感器预测车辆的下一帧位置,也可以用来对lidar_localizar和gnss_localizar的结果进行插值。
1.2 Detection
lidar_detector 从激光雷达单帧扫描读取点云信息,提供基于激光雷达的目标检测。主要使用欧几里德聚类算法,从地面以上的点云得到聚类结果。除此之外,可以使用基于卷积神经网路的算法进行分类,包括VoxelNet,LMNet.
image_detector 读取来自摄像头的图片,提供基于图像的目标检测。主要的算法包括R-CNN,SSD和Yolo,可以进行多类别(汽车,行人等)实时目标检测。
image_tracker 使用image_detector的检测结果完成目标跟踪功能。算法基于Beyond Pixels,图像上的目标跟踪结果被投影到3D空间,结合lidar_detector的检测结果输出最终的目标跟踪结果。
fusion_detector 输入激光雷达的单帧扫描点云和摄像头的图片信息,进行在3D空间的更准确的目标检测。激光雷达的位置和摄像头的位置需要提前进行联合标定,现在主要是基于MV3D算法来实现。
fusion_tools 将lidar_detector和image_detector的检测结果进行融合,image_detector 的识别类别被添加到lidar_detector的聚类结果上。
object_tracter 预测检测目标的下一步位置,跟踪的结果可以被进一步用于目标行为分析和目标速度分析。跟踪算法主要是基于卡尔曼滤波器。
1.3 Prediction
moving_predictor 使用目标跟踪的结果来预测临近物体的未来行动轨迹,例如汽车或者行人。
collision_predictor 使用moving_predictor的结果来进一步预测未来是否会与跟踪目标发生碰撞。输入的信息包括车辆的跟踪轨迹,车辆的速度信息和目标跟踪信息。
2. Computing/Decision
The decision module of Autoware bridges across the perception and the planning modules. Upon the result of perception, Autoware decides a driving behavior, represented by a finite state machine, so that an appropriate planning function can be selected. The current approach to decision making is a rule-based system.
2.1 Intelligence
decision_maker subscribes a large set of topics related to the result of perception, map information, and the current state in order to publish the next-moment state topic. This state change will activate an appropriate planning function.
2.1 State
state_machine changes the state within pre-defined rules, orchestrating with decision_maker.
3.1 Misson planning
route_planner 寻找到达目标地点的全局路径,路径由道路网中的一系列十字路口组成。
lane_planner 根据route_planner发布的一系列十字路口结果,确定全局路径由哪些lane组成,lane是由一系列waypoint点组成
waypoint_planner 可以被用于产生到达目的地的一系列waypont点,它与lane_planner的不同之处在于它是发布单一的到达目的地的waypoint路径,而lane_planner是发布到达目的地的一系列waypoint数组。
waypoint_maker 是一个保存和加载手动制作的waypoint文件的工具。为了保存waypoint到文件里,需要手动驾驶车辆并开启定位模块,然后记录车辆的一系列定位信息以及速度信息, 被记录的信息汇总成为一个路径文件,之后可以加载这个本地文件,并发布需要跟踪的轨迹路径信息给其他规划模块。
3.2 Motion planning
velovity_planner 更新车辆速度信息,注意到给定跟踪的waypoint里面是带有速度信息的,这个模块就是根据车辆的实际状态进一步修正速度信息,以便于实现在停止线前面停止下来或者加减速等等。
astar_planner 实现Hybrid-State A*查找算法,生成从现在位置到指定位置的可行轨迹,这个模块可以实现避障,或者在给定waypoint下的急转弯,也包括在自由空间内的自动停车。
adas_lattice_planner 实现了State Lattice规划算法,基于样条曲线,事先定义好的参数列表和语义地图信息,在当前位置前方产生了多条可行路径,可以被用来进行障碍物避障或车道线换道。
waypoint_follower 这个模块实现了 Pure Pursuit算法来实现轨迹跟踪,可以产生一系列的控制指令来移动车辆,这个模块发出的控制消息可以被车辆控制模块订阅,或者被线控接口订阅,最终就可以实现车辆自动控制。
4. Actuation
Autoware has been installed and tested with a number of by-wired vehicles. Examples of "Powered by Autoware" are listed here.
The computational output of Autoware is a set of velocity, angular velocity, wheel angle, and curvature. These pieces of information are sent as commands to the by-wire controller through the vehicle interface. Controlling the steering and throttle needs to be taken care of by the by-wire controller.
---------------------
原文:https://blog.csdn.net/weixin_35695879/article/details/86716796
Autoware wiki Home
Users Guide: 5.Nodes HOWTO; autoware 显示用户界面细节:https://blog.csdn.net/jianxuezixuan/article/details/86015224