- VINS_MONO视觉导航算法【三】ROS基础知识介绍
凳子花❀
SLAM立体视觉SLAMVINS_Mono
文章目录其他文章说明ROSlaunch文件基本概念定义用途文件结构根标签常用标签\\\\\\\示例基本示例嵌套示例使用方法启动*.launch文件传递参数总结ROStopicTopic的基本概念Topic的工作原理常用命令示例总结ROS常用命令rosrunroslaunchrosbag主要功能roscorerosnoderostopicrosservicerosparamrqtros::spin(
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- VINS-FUSION 优化-在线同步时间td校准
云端舞步
VINS-FUSIONvins-fusion重投影误差视觉误差因子同步时间td校准外参校准雅克比
论文结合源码详细介绍VINS-FUSION优化-在线同步时间td校准。视觉惯性里程计中,不同传感器之间的测量时间同步对于系统的精度和鲁棒性都至关重要。在实际操作时,由于传感器触发和传输过程延迟,在不同传感器测量会出现时间偏移,即时间不同步。所以本文将camera和IMU之间的数据流时间偏移td加入优化系统中,在线实时估计同步时间td。camera和IMU数据流之间的时间偏移td如下图所示:一、同步
- VINS-Fusion-Vehicle 项目使用教程
段琳惟
VINS-Fusion-Vehicle项目使用教程VINS-Fusion-Vehicle对VINS-Fusion的修改,以适配地面小车进行定位建图及导航,可实时采集生成半稠密点云地图和栅格地图。项目地址:https://gitcode.com/gh_mirrors/vi/VINS-Fusion-Vehicle1.项目介绍VINS-Fusion-Vehicle是基于VINS-Fusion的一个修改版
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 无人机避障——感知部分(Ubuntu 20.04 复现Vins Fusion跑数据集)胎教级教程
Perishell
无人机规控算法感知定位SLAM无人机建图感知SLAM
硬件环境:NVIDIAJestonOrinnx系统:Ubuntu20.04任务:跑通EuRoCMAVDataset数据集展示结果:编译VinsFusion创建工作空间vins_ws#创建目录结构mkdir-p~/vins_ws/srccd~/vins_ws/src#初始化工作空间(生成CMakeLists.txt)catkin_init_workspace#克隆官网的代码gitclonehttps
- RISC-V 开发板 + Ubuntu 23.04 部署 open_vins 过程
地衣君
SLAMrisc-vubuntulinux
RISC-V开发板+Ubuntu23.04部署open_vins过程1.背景介绍2.问题描述3.解决过程3.1卸载旧版本3.2安装Suitesparsev5.8.03.3安装CeresSolverv2.0.03.4解决编译爆内存问题同步发布在个人笔记RISC-V开发板+Ubuntu23.04部署open_vins过程1.背景介绍最近遇到一个需求,就是在RISC-V开发板:进迭时空MUSEPiPro
- 《视觉SLAM十四讲》自用笔记 第二讲:SLAM系统概述
BandieraRosa
slam笔记
在rm队伍里作为算法组梯队队员度过了一个赛季,为了促进和负责其他工作的算法组成员的交流,我决定在接下来的半个学期里(可能更快)读完这本书,并将其中的部分理论应用于我自制的雷达导航小车上。以下为第二讲的部分笔记:第二讲SLAM系统概述2.0目标1.理解一个视觉SLAM框架由哪几个模块组成,各模块的任务是什么。2.搭建编程环境,为开发和实验做准备2.1相机单目相机:只使用一个摄像头。无法通过单张照片获
- Ubuntu创建修改 Swap 文件分区的步骤——解决嵌入式开发板编译ROS2程序卡死问题
地衣君
SLAMubuntulinux
Ubuntu创建修改Swap文件分区的步骤——解决嵌入式开发板编译ROS2程序卡死问题1.问题描述2.创建/修改Swap分区2.1创建Swap文件(推荐)2.2使用Swap分区(如果已经存在)3.注意事项同步发布在个人笔记Ubuntu创建修改Swap文件分区的步骤——解决嵌入式开发板编译ROS2程序卡死问题1.问题描述在RISC-V的嵌入式开发板上部署open_vins方案的时候,编译过程会导致板
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- 视觉SLAM十四讲第 2 讲 初识 SLAM
tmiger
计算机视觉人工智能
1.SLAM是什么SLAM是SimultaneousLocalizationandMapping的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。如果传感器主要为相机,就称为“视觉SLAM”。SLAM问题的本质:对运动主体自身和周围环境空间不确定性的估计。2.自主运动的两大基本问题1)我在什么地方?-定位
- 视觉SLAM ch5代码总结(二)
雨幕丶
视觉SLAM计算机视觉c++slam
图像去畸变CMakeLists.txtcmake_minimum_required(VERSION3.10)project(basics)#Eigeninclude_directories("/usr/include/eigen3")#opencvfind_package(OpenCVREQUIRED)#添加头文件include_directories(${OpenCV_INCLUDE_DIRS}
- VINS-FUSION:配置参数说明与配置自己的参数
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介配置文件说明相机配置参数设备参数配置自己的参数相机参数设备参数简介VINS-Fusion是一个基于优化的多传感器状态估计器,实现了视觉惯性里程计(VIO)和视觉惯性全球导航卫星系统(VI-GNSS)融合。配置文件说明VINS-Fusion的主要配置文件位于config/目录下。且对不同的相机类型分为针孔相机、鱼眼相机等配置文件,一般的工业相机都是针孔相机。相机配置参数相机的配置如下:c
- 相机-IMU联合标定:相机-IMU外参标定
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介标定工具kalibr标定数据录制相机-IMU外参标定简介在VINS(视觉惯性导航系统)中,相机-IMU外参标定是确保多传感器数据时空统一的核心环节,其作用可概括为以下关键点:坐标系对齐(空间同步),外参误差会导致视觉特征点投影与IMU预积分轨迹不匹配,引发位姿跳变(如图像特征与IMU预测的轨迹"错位")。时间同步(时间戳对齐),未校正时,高速运动下视觉与IMU数据不同步,融合结果会出现
- 高翔《视觉SLAM十四讲》第七章视觉里程计3d-2d位姿估计代码详解与理论解析
xMathematics
3d视觉slam机器人无人驾驶无人机人工智能
高翔《视觉SLAM十四讲》第七章代码详解与理论解析一、三维空间位姿估计核心算法实现在视觉SLAM领域,3D-2D位姿估计是确定相机在三维空间中位置和姿态的关键技术。本部分将详细解析其工程实现框架,同时说明代码模块的划分逻辑。代码整体结构清晰,各模块分工明确,主要包含特征匹配、3D点构建、PnP问题求解以及位姿优化等部分。算法流程从读取两幅图像和对应的深度图开始,通过特征匹配模块找出两幅图像中的匹配
- 高翔视觉slam中常见的OpenCV和Eigen的几种数据类型的内存布局及分配方式详解
xMathematics
opencv人工智能计算机视觉内存布局c++slam机器人
vector>内存布局及分配方式详解1.内存对齐的必要性Eigen的固定大小类型(如Eigen::Vector2d、Eigen::Matrix4d等)需要16字节内存对齐,以支持SIMD指令(如SSE/AVX)的并行计算。若未对齐,可能导致程序崩溃或性能下降。2.默认分配器的潜在问题若直接使用std::vector,其默认分配器std::allocator可能无法保证内存对齐。例如:若容器内存起始
- 相机-IMU联合标定:IMU标定
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介标定工具安装IMU标定工具code_utilsIMU标定工具imu_utils:标定数据录制IMU标定简介在VINS(Visual-InertialNavigationSystem,视觉惯性导航系统)中,IMU标定是确保系统高精度运行的关键环节。IMU(惯性测量单元)本身存在多种误差,如果不进行标定,会直接影响VINS的位姿估计精度,甚至导致系统失效。以下是IMU标定的核心作用及其影响
- 相机-IMU联合标定:相机标定
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介标定方法标定工具kalibr标定数据录制相机标定简介在VINS(Visual-InertialNavigationSystem,视觉惯性导航系统)中,相机标定是确保视觉数据准确性和系统鲁棒性的关键步骤,其核心作用可总结为以下方面:消除镜头畸变,提升特征点精度确定相机内参(Intrinsics)支持多传感器时空对齐标定方法相机标定可使用matlab标定工具或使用kalibr标定工具。在v
- cmake使用教程
四夕小一冰
cmake相关c++
cmake使用教程本教程是参考高翔视觉SLAM十四讲中的讲解。在一个cmake工程中,首先会用cmake命令生成一个makefile文件,然后用make命令根据这个makefile文件的内容编译整个工程。示例:示例基础编译流程先建立一个项目文件夹project1,在文件夹里面建立一个名为helloSLAM.cpp的文件://helloSLAM.cpp#includeusingnamespacest
- 视觉同步定位与地图构建(Visual SLAM)架构详解
YRr YRr
视觉SLAM架构视觉SLAM
视觉同步定位与地图构建(VisualSLAM)架构详解视觉同步定位与地图构建(VisualSimultaneousLocalizationandMapping,简称视觉SLAM)是机器人自主导航、增强现实等领域中的关键技术。视觉SLAM通过利用摄像头获取的视觉信息,同时完成自身定位与环境地图的构建。其架构通常包括前端处理、后端优化及闭环检测等主要模块。以下将对视觉SLAM的架构进行详细阐述。一、整
- 【菜狗学三维重建】Slam对极几何实战—从两张未知相机内参的图片计算出来相机Rt——20250413
小狗照亮每一天
数码相机计算机视觉深度学习笔记opencv人工智能
目录任务1、读取图像2、特征点检测与匹配3、从匹配的对应点中选择八个点4、求解F矩阵(没有内参信息用基础矩阵F来求Rt)之前有一篇关于原理方面的视觉slam三维重建的文章,现在来实战一下,将书本上的知识转化为代码实现一下“视觉里程计-对极几何-2D-2D”。任务从两张未知相机内参的图片计算出来相机R,t。1、读取图像importcv2#读取两张图像a=cv2.imread("00010.jpg")
- LVI-SAM、VINS-Mono、LIO-SAM算法的阅读参考和m2dgr数据集上的复现(留作学习使用)
再坚持一下!!!
学习
ROS一键安装参考:ROS的最简单安装——鱼香一键安装_鱼香ros一键安装-CSDN博客opencv官网下载4.2.0参考:https://opencv.org/releases/page/3/nvidia驱动安装:ubuntu18.04安装显卡驱动-开始战斗-博客园cuda搭配使用1+2cuda安装1:Ubuntu18.04下安装CUDA_ubuntu18.04安装cuda-CSDN博客cuda
- OAK相机:纯视觉SLAM在夜晚的应用
OAK中国_官方
人工智能机器学习SLAM
哈喽,OAK的朋友们,大家好啊,今天这个视频主要想分享一下袁博士团队用我们的OAK相机产出的新成果在去年过山车SLAM的演示中,袁博士团队就展示了纯视觉SLAM在完全黑暗的环境中的极高鲁棒性。现在袁博士团队进一步挖掘了纯视觉的潜力,于是又专门录了一段夜间的演示给我们展示了在完全黑暗及光线变化的环境中可靠工作的VIO、回环检测及适用于大场景的内存管理技术。他们现在已将整套VSLAM方案包含在Fact
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟